34th International Chemistry Olympiad

Groningen, Wednesday, 10 July 2002
Theoretical Examination

Chemistry and the Quality of Life go Hand in Hand

Theme I Chemistry of Life
l-1 Oxygen in Your LifeI-2 Nitrogen Cycle in Nature
Theme II Chemistry of Industrial Relevance
II-1 Inulin, a New Renewable Raw Material
II-2 Production of Methanol
II-3 Aramids, High-Performance Polymeric Materials
Theme III Chemistry of Functional Molecules in Nature
III-1 Phospholipids in Membranes
III-2 Glutathione, an Essential Mini-Peptide
Theme IV Chemistry Related to Light and Energy
IV-1 Lighting Lamps
IV-2 Red Ruby
IV-3 Vehicle Traction Batteries

- Write your name and student code (posted at your station) on all the pages of the theoretical examination.
- You have 5 hours to complete all the tasks and record your results in the answer boxes, you must stop your work immediately after the STOP command is given. A delay in doing this by 3 minutes will lead to cancellation of the current task and will result in zero points for the task.
- All results must be written in the appropriate boxes on the pages. Anything written elsewhere will not be marked. Do not write anything on the back of your answer sheets. If you need additional sheets or a replacement sheet, request it from the supervisor.
- For a sanitary stop: ask your supervisor for permission.
- When you have finished the examination, you must put all of your papers into the envelope provided, then you must seal the envelope. Only papers in the sealed envelope will be marked.
- A receipt will be issued for your sealed envelope. Do not leave the examination room until you are directed to do so.
- Use only the pen and calculator provided.
- A copy of the Periodic Table of the Elements is provided.
- This examination paper has 31 pages of problems including answer boxes.
- An official English-language version is available only on request.

Theme 1 - Chemistry of Life

Life runs on chemistry. Understanding and monitoring life processes receive much attention in chemistry.

Problem I-1 Oxygen in Your Life

Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{1 5}$	$\mathbf{2 5}$	$\mathbf{1 0}$

Oxygen is of vital importance for all of us. Oxygen enters the body via the lungs and is transported to the tissues in our body by blood. There it can deliver energy by the oxidation of sugars:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

This reaction releases 400 kJ of energy per mol of oxygen. O_{2} uptake by blood is at four heme (Hm) groups in the protein hemoglobin (Hb).
Free Hm consists of an Fe^{2+} ion attached to four N atoms of a porphyrin ${ }^{2-}$ ligand. Oxygen can bind at the coordination site of Fe^{2+} giving a $\mathrm{Hm} \cdot \mathrm{O}_{2}$ complex. Carbon monoxide can be complexed similarly, giving a $\mathrm{Hm} \cdot \mathrm{CO}$ complex. CO is a poison as it binds more strongly to Hm than O_{2} does. The equilibrium constant K_{1} for the reaction:

$$
\begin{equation*}
\mathrm{Hm}+\mathrm{CO} \rightleftharpoons \mathrm{Hm} \cdot \mathrm{CO} \tag{1}
\end{equation*}
$$

is 10000 times larger than the equilibrium constant K_{2} for the reaction:

$$
\begin{equation*}
\mathrm{Hm}+\mathrm{O}_{2} \quad \rightleftarrows \mathrm{Hm}_{2} \tag{2}
\end{equation*}
$$

Each Hb molecule can take up four molecules of O_{2}. Blood in contact with O_{2} absorbs a fraction of this amount, depending on the oxygen pressure, as shown in Figure 1 (curve 1). Also shown are the curves (2) and (3) for blood with two kinds of deficient Hb . These occur in patients with certain hereditary diseases.

Relevant data: O_{2} pressure in lungs is 15 kPa ; in the muscles it is 2 kPa . The maximum flow of blood through heart and lungs is $4 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$. The red cells in blood occupy 40% of the blood volume; inside the cells the concentration of Hb is $340 \mathrm{~kg} \mathrm{~m}^{-3} ; \mathrm{Hb}$ has a molar mass of $64 \mathrm{~kg} \mathrm{~mol}^{-1} \cdot R=8.314 \mathrm{~J}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1} . T=298 \mathrm{~K}$.

I-1-1 Using the relation between K and the standard Gibbs energy ΔG^{0} for a reaction, calculate the difference between the ΔG^{0} values for the heme reactions (1) and (2).

Answer:

Calculation:

I-1-2 Estimate from Figure 1 (to 2 significant figures) how many moles of O_{2} are deposited in muscle tissue when one mole of Hb travels from the lungs to the muscles and back again for the three different types of Hb .

Hb type 1:

Hb type 2:

Hb type 3:

I-1-3 The special S-shaped uptake curve 1 is the result of subtle structural features of Hb . The deficient Hb shown in curve 2 is not optimal because:
\square The binding with O_{2} is too weak.
\square The binding with O_{2} is too strong.
\square The maximum oxygen capacity is too low.
\square The deficiency is caused by carbon monoxide poisoning.

I-1-4 Calculate how much oxygen (in mol s${ }^{-1}$) can be deposited in tissue by blood with normal Hb (1).

Answer:

Calculation:

I-1-5 Calculate the maximum power that the body can produce (assuming it is limited by oxygen transfer).

Answer:
Calculation:

Problem I-2 Nitrogen Cycle in Nature

Score: 7 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{2 5}$

Ammonia is a toxic substance to marine animals at levels exceeding 1 ppm . Nitrifying bacteria play an important role in the conversion of NH_{3} first to nitrite and then to nitrate, the storage form of nitrogen in the soil.

$$
\mathrm{NH}_{3}+2 \mathrm{O}_{2}+\mathrm{NADH} \xrightarrow[\text { bacteria }]{\text { Nitrosomonas }} \mathrm{NO}_{2}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NAD}^{+}
$$

NADH is the biochemical reducing agent of the coenzyme nicotinamide dinucleotide (NAD), NAD $^{+}$is the oxidized form of the coenzyme NAD.

$$
2 \mathrm{NO}_{2}^{-}+\mathrm{O}_{2} \xrightarrow[\text { bacteria }]{\text { Nitrobacter }} 2 \mathrm{NO}_{3}^{-}
$$

I-2-1 Give the oxidation states of N in the following series: (Use the boxes below the compounds)

The spectrophotometric analysis of nitrite is based on a reaction with an indicator. The coloured product then obtained has an absorbance maximum at $\lambda=543 \mathrm{~nm}$.

For quantitative analyses a calibration curve has to be made, in which absorbance at the maximum absorbance wavelength $\lambda=543 \mathrm{~nm}$ is plotted against nitrite concentration in a series of standards.

I-2-2 The measurements are performed at the wavelength with the maximal absorbance because:
\square There is no interference of impurities
\square There is no contribution of stray light
\square There is optimal accuracy of the measurement
\square None of these statements
Mark the correct answer.

The absorption is measured with a single beam spectrophotometer. However 5\% of the light, the socalled stray light I_{s}, strikes the detector directly (see Figure 2).

Figure 2
I-2-3 Calculate the value of the absorbance A shown by the spectrophotometer if $\varepsilon=6000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, $l=1 \mathrm{~cm}$ and $c=1 \times 10^{-4} \mathrm{M}$

Answer:
Calculation:

For a nitrite determination in water the following data have been measured.

concentration of nitrite nitrogen (ppm)	absorbance at $543 \mathrm{~nm}(1.000 \mathrm{~cm}$ cuvet $)$
blank	0.003 (due to impurities in the solvent)
0.915	0.167
1.830	0.328

I-2-4 Determine from the data given above, using the values corrected for the solvent impurities, the slope m and the intercept b of the calibration curve $A=m c+b$.

Answer:

Calculation of m :

Calculation of b :
\The duplicate analyses of a water sample are given below. The measurements have been performed at a wavelength of 543 nm and in a 2.000 cm cuvet.

water sample	absorbance
analysis 1	0.562
analysis 2	0.554

For the calculation of the concentration of the nitrite nitrogen (c in ppm) the equation obtained by the method of least squares
corrected absorbance $=0.1769 c+0.0015$
may be applied, using the measurements in a 1.000 cm cuvet.
I-2-5 Calculate the average nitrite nitrogen concentration in ppm and $\mu \mathrm{g} \mathrm{mL}^{-1}$. Hint: Take the blank from problem I-2-4.

Answer:

Calculation:

Theme II - Chemistry of Industrial Relevance

In our daily life we use many products that are produced on an industrial scale. Mastering the underlying chemistry is at the heart of this business.

Problem II-1 Inulin, a New Renewable Raw Material Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{3 0}$	$\mathbf{1 0}$	$\mathbf{3 0}$

Inulin, which is produced from chicory roots in Belgium and The Netherlands, is used as a food additive as it has a beneficial effect on the intestinal flora. It is also used as source of fructose which is 1.9 times sweeter than sucrose, and for the production of mannitol which is used in chewing gum. Inulin is a linear polymer of fructose units with a glucose unit at one end; its Haworth projection formula is shown at the left. In this problem inulin has 10 fructose units ($\mathrm{n}=9$).

II-1-1 Inulin may be hydrolyzed under H^{+}-catalysis conditions. Of the four options below (A, B, C and \mathbf{D}) indicate which C-O bond cleavage is most likely to occur.

\mathbf{D}
\square

Mark the correct cleavage mechanism for the most efficient hydrolysis.

Hydrolysis with isotopically labelled water can provide information about the mechanism of hydrolysis using modern NMR techniques, which can "see" deuterium $\left({ }^{2} \mathrm{H}\right)$ and the oxygen isotope ${ }^{17} \mathrm{O}$.

II-1-2 Indicate which labelled water can best be used for this purpose. Mark the correct answer.

- ${ }^{2} \mathrm{H}_{2} \mathrm{O}$
$\square \mathrm{H}_{2}{ }^{17} \mathrm{O}$
$\square \quad{ }^{2} \mathrm{H}_{2}{ }^{17} \mathrm{O}$
\square None of them.

Upon catalytic hydrogenation glucose gives sorbitol (S), whilst fructose (F) gives mannitol (M) and sorbitol (S).

II-1-3 Draw the Fischer projections of fructose (F), sorbitol (S) and mannitol (M).

1.00 Mole of inulin in 2.00 kg of water with added catalysts, is subjected to hydrolysis and hydrogenation at $95{ }^{\circ} \mathrm{C}$ in a one step process. The selectivity of the hydrogenation of fructose to mannitol / sorbitol is $7 / 3$.

II-1-4 How many moles of mannitol and sorbitol are obtained?
\square S:

After completion of the reactions the catalysts are removed and the reaction mixture is cooled to 25 ${ }^{\circ} \mathbf{C}$. The solubility of \mathbf{M} is $0.40 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ in water at $25^{\circ} \mathrm{C}$ and the solubility of \mathbf{S} is so high that it will not precipitate.

II-1-5 Calculate how many moles of \mathbf{M} will precipitate.
Answer:
Calculation:

Problem II-2 Production of Methanol Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{1 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$

Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is a chemical that is used for the production of additives in gasoline and many common plastics. A factory, producing methanol, is based on the reaction:

$$
\mathrm{CO}+2 \mathrm{H}_{2} \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}
$$

Hydrogen and CO are obtained by the reaction:

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}+3 \mathrm{H}_{2}
$$

The three units of the factory, namely, the "reformer" for the hydrogen / carbon monoxide production, the "methanol reactor" and a "separator" to separate methanol from CO and H_{2}, are schematically shown in Figure 1. Four positions are indicated by α, β, γ and δ.

Figure 1
The flow of methanol at position γ is $n\left[\mathrm{CH}_{3} \mathrm{OH}, \gamma\right]=1000 \mathrm{~mol} \mathrm{~s}^{-1}$. The factory is so designed that $2 / 3$ of the CO is converted to methanol. Excess CO and H_{2} at position δ are used to heat the first reactor. Assume that the reformer reaction goes to completion.

II-2-1 Calculate the flow of CO and H_{2} at position β.
\square

II-2-2 Calculate the flow of CO and H_{2} at position γ.
\square

II-2-3 Calculate the flows of CH_{4} and $\mathrm{H}_{2} \mathrm{O}$ needed at position α.

II-2-4 At point γ all species are gases. Calculate the partial pressures in MPa for $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ at position γ using the equation:

$$
p_{\mathrm{i}}=p \frac{n_{\mathrm{i}}}{n_{\mathrm{tot}}}
$$

wherein n_{i} is the flow and p_{i} the partial pressure of the compound $\mathrm{i}, n_{\mathrm{tot}}$ is the total flow at the position considered, and p the total pressure in the system. ($p=10 \mathrm{MPa}$)

Answer $p[\mathrm{CO}, \gamma]$:

Answer $p\left[\mathrm{H}_{2}, \gamma\right]$:

Calculations:

When the methanol reactor is large enough the reaction goes to equilibrium. The partial pressures at point γ obey the equation:

$$
K_{\mathrm{p}}=\frac{p_{\mathrm{CH}_{3} \mathrm{OH}} p_{0}^{2}}{p_{\mathrm{CO}} p_{\mathrm{H}_{2}}{ }^{2}}
$$

wherein p_{0} is a constant $(0.1 \mathrm{MPa})$ and K_{p} is a function of temperature as is shown in Figure 2 (the vertical scale is logarithmic).

Figure 2

II-2-5 Calculate K_{p} and indicate at which temperature T the reaction must be operated to achieve this equilibrium.

Answer K_{p} :
Answer $T_{V}:$

Calculation:

Problem II-3 Aramids, High-Performance Polymeric Materials

Score: 6 points

	1	2	3	4
Marks	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{2 5}$	$\mathbf{2 5}$

Aromatic polyamides (aramids) are high strength, high performance polymer fibers that find use in composite materials, bullet-proof vests, high quality skis, safety helmets, etc. Aramid PPTA is marketed under the names Kevlar® (DuPont) and Twaron® (Teijin), and amongst others manufactured in the north of The Netherlands. The PPTA chains are neatly packed into fibers with a sheet type structure.

II-3-1 Draw the structure of these sheets (three chains suffice).

For a polymerisation of equimolar amounts of two monomers the average chain length is \bar{P}_{n}, the degree of conversion is p, which equals the fraction of functional groups that have reacted, the total number of chains is N_{t} and the total initial number of monomers is U_{0}.

Assuming that the polymerization equilibrium can fully be described by:

$$
\mathrm{C}+\mathrm{A} \rightleftharpoons \mathrm{Am}+\mathrm{H}_{2} \mathrm{O}
$$

Where C stands for any $-\mathrm{CO}_{2}$ group, A stands for any $-\mathrm{NH}_{2}$ group and Am stands for any amide group.

II-3-2 Calculate the degree of conversion needed to obtain an average chain length of 500 .
Answer:
Calculation:

II-3-3 For the synthesis of PPTA the following possibilities are considered. Which of the following reactions will work? Mark the correct answer(s).

 $+$

II-3-4 Another type of aramid can be produced from 4-aminobenzoic acid (4-aminobenzenecarboxylic acid) by heating.
(a) Give the structure of this aramid $(\mathrm{n}=4)$
(b) Calculate the average chain length at equilibrium (reaction is carried out in a closed vessel). The equilibrium constant $K=576$.

Answer: $\bar{P}_{\mathrm{n}}=$
Calculation:

Theme III - Chemistry of Functional Molecules in Nature

A challenge in chemistry is to discover what nature does and how the structures of biologically active molecules are related to what they do.

Problem III-1 Phospholipids in Membranes

Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{2 0}$				

Biological cell membranes are complex, functional, non-covalent molecular assemblies, largely consisting of lipids and proteins. Their function is of vital importance for life processes. They separate the cell from its environment and also determine the specific flow of information between the cell contents and the environment. Phospholipids are among the most important components of cell membranes. An example is compound \mathbf{A}.

A

Upon dispersion in water (above a low critical concentration) compound A forms closed bilayer structures, called liposomes, which are employed as model compounds for aspects of the chemistry of the structurally much more complex cell membranes. Liposomes are globular aggregates with the polar or ionic head groups in contact with water and with the alkyl tails sequestered in a hydrophobic core. The bilayer structure encloses an aqueous inner compartment.
Double-tailed synthetic surfactants also form closed bilayer assemblies similar to liposomes but now called vesicles. An example is di-n-dodecyldimethylammonium chloride (DDAC).

DDAC

III-1-1 (a) How many stereoisomers are possible for compound \mathbf{A} ?

(b) How many stereoisomers are possible for the trialkylphosphate \mathbf{B} ?
\square

B

A precursor for the synthesis of compound \mathbf{A} is the acetonide \mathbf{C} derived from glycerol. Part of the ${ }^{1} \mathrm{H}-$ NMR spectrum of compound \mathbf{C} is shown below.

III-1-2 Which signal number in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum corresponds to proton $\mathbf{H}_{\mathbf{c}}$?

The bilayer of a liposome can be characterized by V (the volume of the hydrocarbon chains), a_{0} (optimal cross-sectional surface area of the head groups of the phospholipid in the aggregate) and l_{c} (the maximum chain length that the alkyl group can assume). A good approximation for unbranched alkyl tails containing n carbon atoms yields:

$$
\begin{aligned}
& V=(27.4+26.99 n) \times 10^{-3} \mathrm{~nm}^{3} \\
& l_{\mathrm{c}}=(0.154+0.1265 \mathrm{n}) \mathrm{nm}
\end{aligned}
$$

For very large n values, the intertail interactions dominate over the head group repulsions.

III-1-3 Calculate the minimum cross-sectional surface area of the head groups for such very large n values.

Answer:

Calculation:

Vesicles formed from DDAC (above its critical vesicle concentration, cvc) catalyse the unimolecular decarboxylation of 6-nitro-benzisoxazole-3-carboxylate (6-NBIC).

In water at $25^{\circ} \mathrm{C} k_{1}=3.1 \times 10^{-6} \mathrm{~s}^{-1}$. At the concentration c_{1} of DDAC at which 6-NBIC becomes fully bound to the vesicles, $k_{1}=2.1 \times 10^{-3} \mathrm{~s}^{-1}$.

III-1-4 Sketch a plot of k_{1} vs. [DDAC] for [DDAC] $=0 \rightarrow 3 c_{1}$.

III-1-5 The main reason for the efficient catalysis of the decarboxylation of 6-NBIC by DDAC vesicles is:
The decarboxylation is catalysed by the Cl^{-}ions bound to the surface of the vesicles.
\square Efficient loss of hydration of the carboxylate group of vesicle-bound 6-NBIC.
Strong binding of CO_{2} in the interior of the vesicle.
\square Strong binding of the organic reaction product to the vesicles relative to that of 6-NBIC. Mark the correct answer.

Problem III-2 Glutathione, an Essential Mini-Peptide Score: 6 points

	1 a	1 b	2 a	2 b	2 c	3
Marks	$\mathbf{1 0}$	$\mathbf{2 4}$	$\mathbf{1 8}$	$\mathbf{8}$	$\mathbf{2 5}$	$\mathbf{1 5}$

Glutathione, abbreviated as GSH, is a small peptide that is present in almost all tissues of animals. GSH fulfils important biological functions, such as detoxification of electrophilic chemicals and reduction of (organic) peroxides in blood. An electrophilic compound reacts irreversibly with GSH, especially in the liver, to give a primary product that is converted by a series of biotransformations into a so-called mercapturic acid, which is excreted via the urine. Oxidants react with GSH to give the disulfide GSSG, which can be enzymatically reverted to GSH with reductases. The ratio GSH/GSSG in most cells is ≥ 500.

III-2-1 (a) How many amino acid residues are present in GSH?

(b) Draw the structures of the corresponding amino acids and mark the chiral centers with an asterisk.

A mercapturic acid \mathbf{A} isolated from urine of a person who has been exposed to acrylonitrile $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\right.$ $\mathrm{CN})$ has the molecular formula $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$. The ${ }^{1} \mathrm{H}$-NMR spectrum of \mathbf{A} in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ is shown in Figure 1. When the product is pretreated with $\mathrm{D}_{2} \mathrm{O}$, the signals at $\delta 12.8$ and $\delta 6.8$ are no longer present and the signal 3 is simplified.

Figure 1
III-2-2 (a) The NMR-signals correspond with protons in the following groups: $\mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}, \mathrm{OH}$ and NH. Indicate the appropriate proton group in the boxes for the signals 1-7.

Signals
1
Protons

3

6

\square
(b) How many carbon atoms are present in compound \mathbf{A} that do not carry any protons?

(c) Draw the structure of compound \mathbf{A}.
\square

Vitamin C (ascorbic acid) reacts with oxidants to give dehydroascorbic acid D

III-2-3 Eating fresh fruit and vegetables is healthy
\square because vitamin C forms a complex with GSH.
\square because vitamin C reacts with electrophilic compounds.
because vitamin C removes oxidants and prevents undesired depletion of GSH.
\square for many reasons, but none of them has anything to do with GSH.

Theme IV - Chemistry Related to Light and Energy

Chemistry plays a major role in meeting our needs of light and energy. Our life is unthinkable without artificial light and energy for mobility.

Problem IV-1 Lighting Lamps

Score: $\mathbf{7}$ points

	1	2	3	4	5
Marks	$\mathbf{1 0}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{3 5}$	$\mathbf{5}$

Since 1891 lighting lamps have been manufactured in The Netherlands. The improvement today in comparison to the first lamp is enormous, especially with the introduction of the gas discharge lamps. The life-time has increased by orders of magnitude. The colour is also an important aspect. Rare earth metal compounds like CeBr_{3} are now included to reach a colour temperature of 6000 K in the lamp. These compounds are ionic solids at room temperature, and upon heating they sublime partially to give a vapour of neutral metal halide molecules. To achieve a high vapour pressure, the sublimation enthalpy should be as low as possible.

IV-1-1 Give a thermochemical cycle (Law of Hess) for sublimation of CeBr_{3}, via a vapour of mononuclear ions. ($H_{\mathrm{l}}=H_{\text {lattice }} ; H_{\mathrm{e}}=H_{\text {electrostatic }} ; H_{\mathrm{s}}=H_{\text {sublimation }} ; H$ is not absolute, H means $\Delta H)$

The lattice energy of the solid can be calculated using the Born-Landé formula:

$$
H_{l}=f \frac{Z_{+} Z_{-} A e^{2}}{r_{+}+r_{-}}\left(1-\frac{1}{n}\right)
$$

The factor $f e^{2}$ (necessary in order to calculate the lattice energy in $\mathrm{kJ} \mathrm{mol}^{-1}$) amounts to 139 when the ionic radii are substituted in nm . The Madelung constant A for the lattice is 2.985 . The Born exponent n is 11 . The charges of the ions Z_{+}and Z_{-}are integer numbers (Z_{-}is negative). For the calculation of the energy of gaseous CeBr_{3} (when formed from ions) the same Born-Landé formula can be used without A . The structure of CeBr_{3} in the gas phase is planar triangular. The radius of Ce^{3+} is 0.115 nm and of Br^{-}is 0.182 nm .

IV-1-2 Calculate the enthalpy of sublimation of CeBr_{3} (in integers; be aware of the signs!)
Answer:
Calculation:

Attempts to make a better lamp have been undertaken by adding a stoichiometric amount of CsBr to the CeBr_{3} in the lamp leading at room temperature to solid CsCeBr_{4}. When the sublimation temperature decreases the life time of the lamp will increase likewise. The CsCeBr_{4} lattice has a NaCl structure with Cs^{+}as cations and tetrahedral $\mathrm{CeBr}_{4}{ }^{-}$as complex anions. Sublimation of CsCeBr_{4} leads to a vapour of CsBr and CeBr_{3} molecules.

IV-1-3 Give the reaction equations of the thermochemical cycle (Law of Hess) for this process in which some steps involve CeBr_{4}^{-}ions, mononuclear ions and/or neutral molecules in the gas phase.

IV-1-4 Calculate the enthalpy of sublimation of CsCeBr_{4} (in integers). Use the Born-Landé formula for all steps in the process and report the separate energies also (be aware of the signs!). The Madelung constant for NaCl is 1.75 . The $\mathrm{Cs}-\mathrm{Ce}$ distance in the lattice is 0.617 nm . The CeBr_{4}^{-}anion is a tetrahedron in which the ratio between the edge and the distance between a corner of the tetrahedron and the centre of gravity (body-radius) amounts to $(2 \sqrt{6}) / 3=1.633$. The Born exponent of CsBr is 11 . The radius of Cs^{+}is 0.181 nm .

Answer Step 1: $H_{1}=$
Calculation:

Answer Step 2: $H_{2}=$
Calculation:

Answer Step 3: $H_{3}=$

Calculation:

Answer Step 4: $H_{4}=$
Calculation:

Answer total sum: $H_{\text {total }}=$
Calculation:

IV-1-5 Conclusion in relation to the previous answers: Was adding CsBr a good idea? Mark the correct answer.
\square Adding CsBr is counterproductive
Adding CsBr has no influence
\square Adding CsBr is advantageous
\square From these data no clear answer can be given

Problem IV-2 Red Ruby

Score: 5 points

	1	2	3	4	5
Marks	$\mathbf{2 0}$				

Ruby crystals have a deep red colour and are well known for their use in jewellery. Not many people know that the heart of the first laser, built in 1960 by Maiman, was a big ruby crystal. The red colour of ruby originates from the absorption of light by Cr^{3+} ions that are incorporated in colourless aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ crystals. The Cr^{3+} ion has 3 electrons in the $3 d$ shell and the absorption of light is due to electronic transitions between $3 d$ orbitals of lower and higher energy.
N.B.: A colour picture of the ruby crystal is shown in the Appendix.

IV-2-1 Indicate which of the four absorption spectra belongs to ruby.

Figure 1

The rod used in ruby lasers is a cylinder with a length of 15.2 cm and a diameter of 1.15 cm . The amount of Cr^{3+} ions is 0.050 mass $\%$. The density of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is $4.05 \mathrm{~g} \mathrm{~cm}^{-3}$. The atomic mass of $\mathrm{Cr}=$ 52 u . $\left(1 \mathrm{u}=1.67 \times 10^{-27} \mathrm{~kg}\right)$.

IV-2-2 Calculate how many Cr^{3+} ions are in this laser rod.
Answer:
Calculation:

In rubies the Cr^{3+} ions are coordinated by an octahedron of 6 oxygen ions. The shape of the five $3 d$ orbitals is shown below. The box below shows the splitting of the five $3 d$ orbitals into a group of three orbitals at lower energy ($t_{2 \mathrm{~g}}$) and a group of two at higher energy (e_{g}).

IV-2-3 Indicate in the boxes below which of the $3 d$ orbitals $\left(d_{\mathrm{z}}^{2}, d_{\mathrm{xy}}, d_{\mathrm{yz}}, d_{\mathrm{x}-\mathrm{y}}^{2}{ }^{2}, d_{\mathrm{xz}}\right.$) belong to the $t_{2 \mathrm{~g}}$ group and which belong to the e_{g} group.

$d_{x^{2}-y^{2}}$

$\mathrm{d}_{z^{2}}$
d_{x}
$\mathrm{d}_{x y}$
\square
\square
\square
\square
\square

IV-2-4 Indicate with arrows the distribution and the direction of the magnetic spin moment of the three $3 d$ electrons of Cr^{3+} over the five d orbitals in the lowest energy state of Cr^{3+}.

The ruby is placed on a (non-magnetic) scale. When the scale is in balance (Figure 2) a magnet is placed directly under the side with the ruby.

Figure 2
IV-2-5 Indicate what will happen with the ruby (mark the correct answer)
\square The magnet attracts the ruby (the ruby moves down)
\square The magnet has no influence on the ruby (the ruby does not move)
\square The magnet repels the ruby (the ruby moves up)
\square The magnet has an oscillating effect on the ruby (the ruby moves up and down)

Problem IV-3 Vehicle Traction Batteries

Score: 5 points

	1	2	3	4
Marks	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$

Battery-powered electric vehicles (EV's) are likely to become increasingly common in the next 50 years because of growing concern over pollution caused by vehicles using combustion engines. The reason for the current meagre commercial success of EV's is that the battery specifications must have a performance and cost profile comparable to conventionally powered vehicles.
Lead-acid batteries are extensively used as portable power sources for vehicles and traction. A leadacid battery capable of efficient recharging has an energy density of $45 \mathrm{~Wh} / \mathrm{kg}$.
In the current evolution of EV batteries, the most promising long-term solution is the rechargeable light weight lithium-ion battery. Such batteries are under intensive investigation worldwide and hold also promise for the storage of electricity from solar cells. Their weight is $1 / 3$ of a lead-acid battery. Lithium is used as a negative electrode. It has a high specific capacity and electrode potential. A common positive electrode material is the environmentally benign spinel-type $\mathrm{LiMn}_{2} \mathrm{O}_{4}$. The spinel structure comprises a matrix of cubic close-packed oxide ions, stabilised by lithium ions in tetrahedral sites and manganese ions in octahedral sites. In $\mathrm{LiMn}_{2} \mathrm{O}_{4}$ half of the manganese ions has an oxidation state +3 and half the oxidation state +4 .

A lead-acid battery is represented by:

$$
\mathrm{Pb}(\mathrm{~s})\left|\mathrm{PbSO}_{4}(\mathrm{~s})\right| \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\left|\mathrm{PbSO}_{4}(\mathrm{~s})\right| \mathrm{PbO}_{2}(\mathrm{~s}) \mid(\mathrm{Pb}(\mathrm{~s}))
$$

A lithium battery is represented by:

$$
\mathrm{Li}(\mathrm{~s}) \mid \mathrm{Li}^{+} \text {-conducting (solid) electrolyte(s) } \mid \mathrm{LiMn}_{2} \mathrm{O}_{4}(\mathrm{~s})
$$

Upon discharge the insertion product $\mathrm{Li}_{2} \mathrm{Mn}_{2} \mathrm{O}_{4}$ is formed. Charging the battery leads to the products $\mathrm{Li}(\mathrm{s})$ and $\mathrm{LiMn}_{2} \mathrm{O}_{4}$.

IV-3-1 Give the electrochemical reactions at the electrodes of the lead-acid battery during discharge.
Reaction at the negative electrode:

Reaction at the positive electrode:

IV-3-2 Give the electrochemical reactions at the electrodes of the lithium-ion battery upon discharge.
Reaction at the negative electrode:

Reaction at the positive electrode:

IV-3-3 Give the coordination numbers of the lithium ions and of the manganese ions in the spinel structure of $\mathrm{LiMn}_{2} \mathrm{O}_{4}$.
Li-ions:

```
Mn-ions:
```

A typical family car of 1000 kg requires at least 5 kWh of energy to move 50 km , which corresponds with the consumption of about 5.0 L or 3.78 kg of petrol. This conventional car has a petrol tank volume of 50 L . The weight of the tank is 10 kg . The fuel consumption is $10 \mathrm{~km} \mathrm{~L}^{-1}$.

IV-3-4 Calculate the extra weight of the car if the petrol tank is replaced by an equivalent battery in an EV based on (a) lead-acid battery and (b) lithium battery. Assume that in all cases the engine efficiency is the same.
(a) Extra weight of a lead-acid battery car:

Answer:
Calculation:
(b) Extra weight of a lithium battery car:

Answer:

Calculation:
Periodic Table of Elements

$$
\text { Metals } \quad \text { Non-metals }
$$

$$
=0
$$

$$
8 \text { g }
$$

$$
\leq
$$

$$
(\text { Numbers })=\text { most stable isotope }
$$

$$
\begin{aligned}
& \text { Atomic weights based on }{ }^{12} \mathrm{C}=12 \\
& \text { (Numbers) }=\text { = most stable isotope }
\end{aligned}
$$

Scientific Committee of the $34^{\text {th }}$ International Chemistry Olympiad

Chairperson:

Prof.dr. B. Zwanenburg
University of Nijmegen

Section Theory:

Prof.dr.ir. H. van Bekkum
Prof.dr. H.P.J. Bloemers
Prof.dr. F.B. van Duijneveldt
Prof.dr. J.B.F.N. Engberts
Dr. G.A. van der Marel
Prof.dr. E.W. Meijer
Prof.dr. A. Meijerink
Prof.dr. A. Oskam
Prof.dr. J. Schoonman
Prof.dr. A.J. Schouten
Ms. Prof.dr. N.H. Velthorst
Prof.ir. J.A. Wesselingh
Delft University of Technology
University of Nijmegen
University of Utrecht
University of Groningen
University of Leiden
Eindhoven University of Technology
University of Utrecht
University of Amsterdam
Delft University of Technology
University of Groningen
Free University, Amsterdam
University of Groningen

Section Practical:

Prof.dr. J.F.J. Engbersen
Dr. E. Joling
Dr. A.J.H. Klunder
Dr. A.J. Minnaard
Dr. J.A.J.M. Vekemans
Mr.Ing. T. van Weerd
Dr. W.H. de Wolf

Consultants:

Drs. P. de Groot
Drs. A.M Witte
Drs. W. Davids

Secretariat:

Twente University of Technology
University of Amsterdam
University of Nijmegen
University of Groningen
Eindhoven University of Technology
University of Nijmegen
Free University, Amsterdam

Dr. R. Ruinaard
J. Brinkhorst

Ms. M.V. Versteeg

34th International Chemistry Olympiad

Groningen, Wednesday, 10 July 2002
Theoretical Examination

Chemistry and the Quality of Life go Hand in Hand

Theme I Chemistry of Life
l-1 Oxygen in Your Life
I-2 Nitrogen Cycle in Nature
Theme II Chemistry of Industrial Relevance
II-1 Inulin, a New Renewable Raw Material
II-2 Production of Methanol
II-3 Aramids, High-Performance Polymeric Materials
Theme III Chemistry of Functional Molecules in Nature
III-1 Phospholipids in Membranes
III-2 Glutathione, an Essential Mini-Peptide
Theme IV Chemistry Related to Light and Energy
IV-1 Lighting Lamps
IV-2 Red Ruby
IV-3 Vehicle Traction Batteries

- Write your name and student code (posted at your station) on all the pages of the theoretical examination.
- You have 5 hours to complete all the tasks and record your results in the answer boxes, you must stop your work immediately after the STOP command is given. A delay in doing this by 3 minutes will lead to cancellation of the current task and will result in zero points for the task.
- All results must be written in the appropriate boxes on the pages. Anything written elsewhere will not be marked. Do not write anything on the back of your answer sheets. If you need additional sheets or a replacement sheet, request it from the supervisor.
- For a sanitary stop: ask your supervisor for permission.
- When you have finished the examination, you must put all of your papers into the envelope provided, then you must seal the envelope. Only papers in the sealed envelope will be marked.
- A receipt will be issued for your sealed envelope. Do not leave the examination room until you are directed to do so.
- Use only the pen and calculator provided.
- A copy of the Periodic Table of the Elements is provided.
- This examination paper has 32 pages of problems including answer boxes.
- An official English-language version is available only on request.

Theme 1 - Chemistry of Life

Life runs on chemistry. Understanding and monitoring life processes receive much attention in chemistry.

Problem I-1 Oxygen in Your Life

Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{1 5}$	$\mathbf{2 5}$	$\mathbf{1 0}$

Oxygen is of vital importance for all of us. Oxygen enters the body via the lungs and is transported to the tissues in our body by blood. There it can deliver energy by the oxidation of sugars:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

This reaction releases 400 kJ of energy per mol of oxygen. O_{2} uptake by blood is at four heme (Hm) groups in the protein hemoglobin (Hb).
Free Hm consists of an Fe^{2+} ion attached to four N atoms of a porphyrin ${ }^{2-}$ ligand. Oxygen can bind at the coordination site of Fe^{2+} giving a $\mathrm{Hm} \cdot \mathrm{O}_{2}$ complex. Carbon monoxide can be complexed similarly, giving a $\mathrm{Hm} \cdot \mathrm{CO}$ complex. CO is a poison as it binds more strongly to Hm than O_{2} does. The equilibrium constant K_{1} for the reaction:

$$
\begin{equation*}
\mathrm{Hm}+\mathrm{CO} \rightleftharpoons \mathrm{Hm} \cdot \mathrm{CO} \tag{1}
\end{equation*}
$$

is 10000 times larger than the equilibrium constant K_{2} for the reaction:

$$
\begin{equation*}
\mathrm{Hm}+\mathrm{O}_{2} \rightleftharpoons \mathrm{Hm} \cdot \mathrm{O}_{2} \tag{2}
\end{equation*}
$$

Each Hb molecule can take up four molecules of O_{2}. Blood in contact with O_{2} absorbs a fraction of this amount, depending on the oxygen pressure, as shown in Figure 1 (curve 1). Also shown are the curves (2) and (3) for blood with two kinds of deficient Hb . These occur in patients with certain hereditary diseases.

Figure 1

Relevant data: O_{2} pressure in lungs is 15 kPa ; in the muscles it is 2 kPa . The maximum flow of blood through heart and lungs is $4 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}$. The red cells in blood occupy 40% of the blood volume; inside the cells the concentration of Hb is $340 \mathrm{~kg} \mathrm{~m}^{-3} ; \mathrm{Hb}$ has a molar mass of $64 \mathrm{~kg} \mathrm{~mol}^{-1} \cdot R=8.314 \mathrm{~J}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1} . T=298 \mathrm{~K}$.

I-1-1 Using the relation between K and the standard Gibbs energy ΔG^{0} for a reaction, calculate the difference between the ΔG^{0} values for the heme reactions (1) and (2).

Answer: $23 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Calculation:
$K_{1}=\exp \left(-\Delta G_{1}^{0} /(R T)\right) \quad \Delta G_{1}^{0}=-R T \ln \left(K_{1}\right)$
$K_{2}=\exp \left(-\Delta G_{2}^{0} /(R T)\right) \quad \Delta G_{2}^{0}=-R T \ln \left(K_{2}\right)$ 10
$\Delta G^{0}{ }_{2}-\Delta G^{0}{ }_{1}=R T \ln \left(K_{1} / K_{2}\right)=\left(2477 \mathrm{~J} \mathrm{~mol}^{-1}\right) \times \ln \left(10^{4}\right)=23 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$10+5$

I-1-2 Estimate from Figure 1 (to 2 significant figures) how many moles of O_{2} are deposited in muscle tissue when one mole of Hb travels from the lungs to the muscles and back again for the three different types of Hb .

Hb type 1: $(0.98-0.17) \times 4=3.2 \mathrm{~mol}$
Factor 4 correct 10 points
Hb-type correct fraction 5 points

Hb type 2: $(1.00-0.60) \times 4=1.6 \mathrm{~mol} \quad$ Hb-type correct fraction 5 points

Hb type 3: $(0.73-0.01) \times 4=2.9 \mathrm{~mol}$
Hb-type correct fraction 5 points

I-1-3 The special S-shaped uptake curve 1 is the result of subtle structural features of Hb . The deficient Hb shown in curve 2 is not optimal because:
\square The binding with O_{2} is too weak.

- The binding with O_{2} is too strong.
\square The maximum oxygen capacity is too low.
\square The deficiency is caused by carbon monoxide poisoning.

I-1-4 Calculate how much oxygen (in mol s${ }^{-1}$) can be deposited in tissue by blood with normal Hb (1).

Answer: $2.72 \times 10^{-3} \mathrm{~mol} \mathrm{~s}^{-1}$

Calculation:

$\left(4 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~s}^{-1}\right) \times 0.4 \times\left(340 \mathrm{~kg} \mathrm{~m}^{-3}\right) \times\left(3.2 \mathrm{~mol} \mathrm{O}_{2} / \mathrm{mol} \mathrm{Hb}\right) /\left(64 \mathrm{~kg} \mathrm{~mol}^{-1}\right)=2.72 \times 10^{-3} \mathrm{~mol} \mathrm{~s}^{-1}$

-10 points for each missing factor

I-1-5 Calculate the maximum power that the body can produce (assuming it is limited by oxygen transfer).

Answer: 1088 W
Calculation:
$\left(2.72 \times 10^{-3} \mathrm{~mol} \mathrm{~s}^{-1}\right) \times\left(400 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)=1088 \mathrm{~W}$ 10 or 5 or 0

Problem I-2 Nitrogen Cycle in Nature

Score: 7 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{2 5}$

Ammonia is a toxic substance to marine animals at levels exceeding 1 ppm . Nitrifying bacteria play an important role in the conversion of NH_{3} first to nitrite and then to nitrate, the storage form of nitrogen in the soil.

$$
\mathrm{NH}_{3}+2 \mathrm{O}_{2}+\mathrm{NADH} \xrightarrow[\text { bacteria }]{\text { Nitrosomonas }} \mathrm{NO}_{2}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NAD}^{+}
$$

NADH is the biochemical reducing agent of the coenzyme nicotinamide dinucleotide (NAD), NAD^{+}is the oxidized form of the coenzyme NAD.

$$
2 \mathrm{NO}_{2}^{-}+\mathrm{O}_{2} \xrightarrow[\text { bacteria }]{\text { Nitrobacter }} 2 \mathrm{NO}_{3}^{-}
$$

I-2-1 Give the oxidation states of N in the following series: (Use the boxes below the compounds)

$5+5+5$
The spectrophotometric analysis of nitrite is based on a reaction with an indicator. The coloured product then obtained has an absorbance maximum at $\lambda=543 \mathrm{~nm}$.

For quantitative analyses a calibration curve has to be made, in which absorbance at the maximum absorbance wavelength $\lambda=543 \mathrm{~nm}$ is plotted against nitrite concentration in a series of standards.

I-2-2 The measurements are performed at the wavelength with the maximal absorbance because:
There is no interference of impurities

- There is no contribution of stray light
- There is optimal accuracy of the measurement
\square None of these statements
Mark the correct answer.
15

The absorption is measured with a single beam spectrophotometer. However 5\% of the light, the socalled stray light I_{s}, strikes the detector directly (see Figure 2).

Figure 2

I-2-3 Calculate the value of the absorbance A shown by the spectrophotometer if $\varepsilon=6000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, $l=1 \mathrm{~cm}$ and $c=1 \times 10^{-4} \mathrm{M}$

Answer: $A=0.50$

Calculation: $I_{\mathrm{s}}=0.05 I_{0}$ $A=\log \frac{I_{0}}{I+I_{\mathrm{s}}}$	$\mathbf{5}$
$I=0.95 I_{0} \times 10^{-(6000 \times 0.0001 \times 1)}=0.95 I_{0} \times 10^{-0.6}$	
$A=\log \frac{I_{0}}{0.95 I_{0} \times 10^{-0.6}+0.05 I_{0}}=\log \frac{I_{0}}{0.29 I_{0}}=0.50$	$\mathbf{5}$

For a nitrite determination in water the following data have been measured.

concentration of nitrite nitrogen (ppm)	absorbance at $543 \mathrm{~nm}(1.000 \mathrm{~cm}$ cuvet $)$
blank	0.003 (due to impurities in the solvent)
0.915	0.167
1.830	0.328

I-2-4 Determine from the data given above, using the values corrected for the solvent impurities, the slope m and the intercept b of the calibration curve $A=m c+b$.

Answer: $\quad m=0.176$

$$
b=0.003
$$

Calculation of m :

Slope m of the calibration curve:

$$
m=\frac{\Delta A}{\Delta c}=\frac{A_{2}-A_{1}}{c_{2}-c_{1}} \quad 5 \quad m \quad \frac{0.325-0.164}{1.830-0.915}=\frac{0.161}{0.915}=0.176
$$

Correct absorbances 5
 Calculation of \mathbf{m}

(Explanation: From the corrected absorbance values $A_{2}=0.325$ and $A_{1}=0.164$, and the concentrations $c_{2}=1.830 \mathrm{ppm}$ and $c_{1}=0.915 \mathrm{ppm}$, follows the value of m)

Calculation of b :
From the corrected absorbance $A=0.325$
the concentration $c=1.830 \mathrm{ppm}$
and the slope $m=0.176$
follows the value of b :

$$
\begin{aligned}
& 0.325=0.176 \times 1.830+b \\
& b=0.325-0.322=0.003
\end{aligned}
$$

Calculation of b 10

The duplicate analyses of a water sample are given below. The measurements have been performed at a wavelength of 543 nm and in a 2.000 cm cuvet.

water sample	absorbance
analysis 1	0.562
analysis 2	0.554

For the calculation of the concentration of the nitrite nitrogen (c in ppm) the equation obtained by the method of least squares
corrected absorbance $=0.1769 c+0.0015$
may be applied, using the measurements in a 1.000 cm cuvet.
I-2-5 Calculate the average nitrite nitrogen concentration in ppm and $\mu \mathrm{g} \mathrm{mL}^{-1}$. Hint: Take the blank from problem I-2-4.

```
Answer: 1.55 ppm
Calculation:
The average absorbance in a }2.000\textrm{cm}\mathrm{ cuvet is 0.558
5
The average absorbance in a }1.000\textrm{cm}\mathrm{ cuvet is 0.279 5
The corrected average absorbance in a 1 cm cuvet is 0.276
Substituting this value into the equation gives:
Corrected absorbance = 0.1769 c+0.0015
c=(0.276-0.0015)/0.1769 = 1.55 ppm
c is also 1.55 \mug mL
5
```


Theme II - Chemistry of Industrial Relevance

In our daily life we use many products that are produced on an industrial scale. Mastering the underlying chemistry is at the heart of this business.

Problem II-1 Inulin, a New Renewable Raw Material Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{3 0}$	$\mathbf{1 0}$	$\mathbf{3 0}$

Inulin, which is produced from chicory roots in Belgium and The Netherlands, is used as a food additive as it has a beneficial effect on the intestinal flora. It is also used as source of fructose which is 1.9 times sweeter than sucrose, and for the production of mannitol which is used in chewing gum. Inulin is a linear polymer of fructose units with a glucose unit at one end; its Haworth projection formula is shown at the left. In this problem inulin has 10 fructose units ($\mathrm{n}=9$).

II-1-1 Inulin may be hydrolyzed under H^{+}-catalysis conditions. Of the four options below ($\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}) indicate which C-O bond cleavage is most likely to occur.

Mark the correct cleavage mechanism for the most efficient hydrolysis.

15

Hydrolysis with isotopically labelled water can provide information about the mechanism of hydrolysis using modern NMR techniques, which can "see" deuterium $\left({ }^{2} \mathrm{H}\right)$ and the oxygen isotope ${ }^{17} \mathrm{O}$.

II-1-2 Indicate which labelled water can best be used for this purpose. Mark the correct answer.

- ${ }^{2} \mathrm{H}_{2} \mathrm{O}$
- $\mathrm{H}_{2}{ }^{17} \mathrm{O}$
$\square{ }^{2} \mathrm{H}_{2}{ }^{17} \mathrm{O}$
\square None of them.
15

Upon catalytic hydrogenation glucose gives sorbitol (S), whilst fructose (F) gives mannitol (M) and sorbitol (S).

II-1-3 Draw the Fischer projections of fructose (\mathbf{F}), sorbitol (S) and mannitol (\mathbf{M}).

1.00 Mole of inulin in 2.00 kg of water with added catalysts, is subjected to hydrolysis and hydrogenation at $95{ }^{\circ} \mathrm{C}$ in a one step process. The selectivity of the hydrogenation of fructose to mannitol / sorbitol is $7 / 3$.

II-1-4 How many moles of mannitol and sorbitol are obtained?

$$
\mathbf{S}: \quad 4.00
$$

10 or 0

After completion of the reactions the catalysts are removed and the reaction mixture is cooled to 25 ${ }^{\circ} \mathbf{C}$. The solubility of \mathbf{M} is $0.40 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ in water at $25^{\circ} \mathrm{C}$ and the solubility of \mathbf{S} is so high that it will not precipitate.

1-5 Calculate how many moles of \mathbf{M} will precipitate.

Answer: 6.27 mol

Calculation:

Remaining amount of water: $2.00-(10 \times 0.018)=1.82 \mathrm{~kg}$
$\mathbf{M}_{\text {total }}=7.00 \mathrm{~mol} ; \quad \mathbf{M}_{\text {dissolved }}=1.82 \times 0.40=0.73 \mathrm{~mol}=\Rightarrow \quad \mathbf{M}_{\text {precipitated }}=7.00-0.73=6.27 \mathrm{~mol}$

30 (-25 when reacting water is neglected)

Problem II-2 Production of Methanol Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{1 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$

Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is a chemical that is used for the production of additives in gasoline and many common plastics. A factory, producing methanol, is based on the reaction:

$$
\mathrm{CO}+2 \mathrm{H}_{2} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}
$$

Hydrogen and CO are obtained by the reaction:

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}+3 \mathrm{H}_{2}
$$

The three units of the factory, namely, the "reformer" for the hydrogen / carbon monoxide production, the "methanol reactor" and a "separator" to separate methanol from CO and H_{2}, are schematically shown in Figure 1. Four positions are indicated by α, β, γ and δ.

Figure 1
The flow of methanol at position γ is $n\left[\mathrm{CH}_{3} \mathrm{OH}, \gamma\right]=1000 \mathrm{~mol} \mathrm{~s}^{-1}$. The factory is so designed that $2 / 3$ of the CO is converted to methanol. Excess CO and H_{2} at position δ are used to heat the first reactor. Assume that the reformer reaction goes to completion.

II-2-1 Calculate the flow of CO and H_{2} at position β.

```
n[CO,\beta]=(3/2)\timesn[CH3}\textrm{OH},\gamma]=1500 \mp@subsup{\textrm{mol s}}{}{-1
n[\mp@subsup{\textrm{H}}{2}{\prime},\beta]=3\timesn[CO,\beta]=4500 mol s
15 (only one -10)
```

II-2-2 Calculate the flow of CO and H_{2} at position γ.
$n[\mathrm{CO}, \gamma]=n[\mathrm{CO}, \beta]-n\left[\mathrm{CH}_{3} \mathrm{OH}, \gamma\right]=1500-1000=500 \mathrm{~mol} \mathrm{~s}^{-1}$
$n\left[\mathrm{H}_{2}, \gamma\right]=n\left[\mathrm{H}_{2}, \beta\right]-2 \times n\left[\mathrm{CH}_{3} \mathrm{OH}, \gamma\right]=4500-2 \times 1000=2500 \mathrm{~mol} \mathrm{~s}^{-1}$
$10+10$

II-2-3 Calculate the flows of CH_{4} and $\mathrm{H}_{2} \mathrm{O}$ needed at position α.

```
n[\mp@subsup{CH}{4, 人] = n[CO, \beta] = 1500 mol s}{}\mp@subsup{}{}{-1}
n[\mp@subsup{\textrm{H}}{2}{}\textrm{O},\alpha]=n[\textrm{CO},\beta]=1500 \mp@subsup{\textrm{mol s}}{}{-1}
15 (only one -10)
```

II-2-4 At point γ all species are gases. Calculate the partial pressures in MPa for $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ at position γ using the equation:

$$
p_{\mathrm{i}}=p \frac{n_{\mathrm{i}}}{n_{\mathrm{tot}}}
$$

wherein n_{i} is the flow and p_{i} the partial pressure of the compound $\mathrm{i}, n_{\mathrm{tot}}$ is the total flow at the position considered, and p the total pressure in the system. ($p=10 \mathrm{MPa}$)

Answer $p[\mathrm{CO}, \gamma]: 1.25 \mathrm{MPa}$
Answer $p\left[\mathrm{H}_{\underline{2}}, \gamma\right]: 6.25 \mathrm{MPa}$
Calculations:

$$
\begin{array}{ll}
n_{\mathrm{tot}}=1000+500+2500=4000 & \mathbf{1 0}+\mathbf{5} \\
\boldsymbol{p}[\mathbf{C H} \mathbf{O H}, \boldsymbol{\mathbf { O H }}=\mathbf{1 0} \mathbf{M p a} \times \mathbf{1 0 0 0} / \mathbf{4 0 0 0}=\mathbf{2 . 5} \mathbf{~ M p a} & \\
p[\mathrm{CO}, \gamma]=10 \mathrm{MPa} \times 500 / 4000=1.25 \mathrm{Mpa} & \mathbf{5} \\
p\left[\mathrm{H}_{2}, \gamma\right]=10 \mathrm{MPa} \times 2500 / 4000=6.25 \mathrm{Mpa} & \mathbf{5}
\end{array}
$$

When the methanol reactor is large enough the reaction goes to equilibrium. The partial pressures at point γ obey the equation:

$$
K_{\mathrm{p}}=\frac{p_{\mathrm{CH}_{3} \mathrm{OH}} p_{0}^{2}}{p_{\mathrm{CO}} p_{\mathbf{H}_{2}}{ }^{2}}
$$

wherein p_{0} is a constant $(0.1 \mathrm{MPa})$ and K_{p} is a function of temperature as is shown in Figure 2 (the vertical scale is logarithmic).

Figure 2

II-2-5 Calculate K_{p} and indicate at which temperature T the reaction must be operated to achieve this equilibrium.

Answer $K_{\mathrm{p}}: \quad 5.12 \times 10^{-4}$
Answer $T_{\chi:} \quad 630 \mathrm{~K} \quad$ Read from the graph at 5.1×10^{-4} on the y-axis
Temperature $620-640 \mathrm{~K} 10$ points, else 0 points
Calculation:
$K_{\mathrm{p}}=\left(2.5 \times 0.1^{2}\right) /\left(1.25 \times 6.25^{2}\right)=5.12 \times 10^{-4}$
15

Problem II-3 Aramids, High-Performance Polymeric Materials

Score: 6 points

	1	2	3	4
Marks	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{2 5}$	$\mathbf{2 5}$

Aromatic polyamides (aramids) are high strength, high performance polymer fibers that find use in composite materials, bullet-proof vests, high quality skis, safety helmets, etc. Aramid PPTA is marketed under the names Kevlar® (DuPont) and Twaron® (Teijin), and amongst others manufactured in the north of The Netherlands. The PPTA chains are neatly packed into fibers with a sheet type structure.

II-3-1 Draw the structure of these sheets (three chains suffice).

2 strings -10, only one \mathbf{H}-bridge $-10, \mathrm{H}$-bridge to nitrogen half of the points

For a polymerisation of equimolar amounts of two monomers the average chain length is \bar{P}_{n}, the degree of conversion is p, which equals the fraction of functional groups that have reacted, the total number of chains is N_{t} and the total initial number of monomers is U_{0}.

Assuming that the polymerization equilibrium can fully be described by:

$$
\mathrm{C}+\mathrm{A} \rightleftharpoons \mathrm{Am}+\mathrm{H}_{2} \mathrm{O}
$$

Where C stands for any $-\mathrm{CO}_{2} \mathrm{H}$ group, A stands for any $-\mathrm{NH}_{2}$ group and Am stands for any amide group.

II-3-2 Calculate the degree of conversion needed to obtain an average chain length of 500 .
Answer: 0.998
Calculation:

$$
\bar{P}_{\mathrm{n}}=\frac{U_{0}}{N_{\mathrm{t}}} \quad p=\frac{U_{0}-N_{\mathrm{t}}}{U_{0}} \Longrightarrow p=1-\frac{N_{\mathrm{t}}}{U_{0}} \quad \Longrightarrow \frac{N_{\mathrm{t}}}{U_{0}}=1-p \quad \bar{P}_{\mathrm{n}}=\frac{1}{1-p}
$$

$$
500=\frac{1}{1-p} \quad p=\frac{499}{500}=0.998
$$

Formula correct 15, calculation correct 15

II-3-3 For the synthesis of PPTA the following possibilities are considered. Which of the following reactions will work? Mark the correct answer(s).

option b 15, option c 10

II-3-4 Another type of aramid can be produced from 4-aminobenzoic acid (4-aminobenzenecarboxylic acid) by heating.
(a) Give the structure of this aramid $(\mathrm{n}=4)$

10
(b) Calculate the average chain length at equilibrium (reaction is carried out in a closed vessel). The equilibrium constant $K=576$.

Answer: $\bar{P}_{\mathrm{n}}=25$
Calculation:
$K=576$
$K=\frac{[\mathrm{Am}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{C}] \times[\mathrm{A}]}=\frac{p U_{0} \times p U_{0}}{(1-p)^{2} \mathrm{U}_{0}^{2}}=\frac{p^{2}}{(1-p)^{2}}=576 \Rightarrow p=0.96$
$\overline{P_{\mathrm{n}}}=\frac{1}{1-p}=\frac{1}{1-0.96}=25$
K correct 10 points, P_{n} correct 5 points

Theme III - Chemistry of Functional Molecules in Nature

A challenge in chemistry is to discover what nature does and how the structures of biologically active molecules are related to what they do.

Problem III-1 Phospholipids in Membranes

Score: 6 points

	1	2	3	4	5
Marks	$\mathbf{2 0}$				

Biological cell membranes are complex, functional, non-covalent molecular assemblies, largely consisting of lipids and proteins. Their function is of vital importance for life processes. They separate the cell from its environment and also determine the specific flow of information between the cell contents and the environment. Phospholipids are among the most important components of cell membranes. An example is compound \mathbf{A}.

A

Upon dispersion in water (above a low critical concentration) compound A forms closed bilayer structures, called liposomes, which are employed as model compounds for aspects of the chemistry of the structurally much more complex cell membranes. Liposomes are globular aggregates with the polar or ionic head groups in contact with water and with the alkyl tails sequestered in a hydrophobic core. The bilayer structure encloses an aqueous inner compartment.
Double-tailed synthetic surfactants also form closed bilayer assemblies similar to liposomes but now called vesicles. An example is di-n-dodecyldimethylammonium chloride (DDAC).

DDAC

III-1-1 (a) How many stereoisomers are possible for compound \mathbf{A} ?
\square
2
10
(b) How many stereoisomers are possible for the trialkylphosphate \mathbf{B} ?

A precursor for the synthesis of compound \mathbf{A} is the acetonide \mathbf{C} derived from glycerol. Part of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound \mathbf{C} is shown below.

III-1-2 Which signal number in the ${ }^{1} \mathrm{H}$-NMR spectrum corresponds to proton $\mathbf{H}_{\mathbf{c}}$?

C

$$
\frac{\mathbf{H}_{\mathbf{c}}=1}{20}
$$

The bilayer of a liposome can be characterized by V (the volume of the hydrocarbon chains), a_{0} (optimal cross-sectional surface area of the head groups of the phospholipid in the aggregate) and l_{c} (the maximum chain length that the alkyl group can assume). A good approximation for unbranched alkyl tails containing n carbon atoms yields:

$$
\begin{aligned}
& V=(27.4+26.99 n) \times 10^{-3} \mathrm{~nm}^{3} \\
& l_{\mathrm{c}}=(0.154+0.1265 n) \mathrm{nm}
\end{aligned}
$$

For very large n values, the intertail interactions dominate over the head group repulsions.

III-1-3 Calculate the minimum cross-sectional surface area of the head groups for such very large n values.

Answer: $0.213 \mathrm{~nm}^{2}$
Calculation:

$$
\begin{aligned}
& a_{0}(\min)=\frac{V}{l_{\mathrm{c}}}=\frac{(27.4+26.99 \mathrm{n}) \times 10^{-3}}{(0.154+0.1265 \mathrm{n})} \mathrm{nm}^{2} \\
& n \rightarrow \text { large } \Longrightarrow \frac{26.99 \times 10^{-3}}{0.1265}=0.213 \mathrm{~nm}^{2}
\end{aligned}
$$

Vesicles formed from DDAC (above its critical vesicle concentration, cvc) catalyse the unimolecular decarboxylation of 6-nitro-benzisoxazole-3-carboxylate (6-NBIC).

In water at $25^{\circ} \mathrm{C} k_{1}=3.1 \times 10^{-6} \mathrm{~s}^{-1}$. At the concentration c_{1} of DDAC at which 6-NBIC becomes fully bound to the vesicles, $k_{1}=2.1 \times 10^{-3} \mathrm{~s}^{-1}$.

III-1-4 Sketch a plot of k_{1} vs. [DDAC] for [DDAC] $=0 \rightarrow 3 c_{1}$.

We expect curved bends in the graph, sharp corners are also accepted 20

Cve not included -5, above \boldsymbol{c}_{1} not constant -15

III-1-5 The main reason for the efficient catalysis of the decarboxylation of 6-NBIC by DDAC vesicles is: $\quad 20$ or $\mathbf{0}$
The decarboxylation is catalysed by the Cl^{-}ions bound to the surface of the vesicles.
Efficient loss of hydration of the carboxylate group of vesicle-bound 6-NBIC.
Strong binding of CO_{2} in the interior of the vesicle.
Strong binding of the organic reaction product to the vesicles relative to that of 6-NBIC. Mark the correct answer.

Problem III-2 Glutathione, an Essential Mini-Peptide Score: 6 points

	1 a	1 b	2 a	2 b	2 c	3
Marks	$\mathbf{1 0}$	$\mathbf{2 4}$	$\mathbf{1 8}$	$\mathbf{8}$	$\mathbf{2 5}$	$\mathbf{1 5}$

Glutathione, abbreviated as GSH, is a small peptide that is present in almost all tissues of animals. GSH fulfils important biological functions, such as detoxification of electrophilic chemicals and reduction of (organic) peroxides in blood. An electrophilic compound reacts irreversibly with GSH, especially in the liver, to give a primary product that is converted by a series of biotransformations into a so-called mercapturic acid, which is excreted via the urine. Oxidants react with GSH to give the disulfide GSSG, which can be enzymatically reverted to GSH with reductases. The ratio GSH/GSSG in most cells is ≥ 500.

III-2-1 (a) How many amino acid residues are present in GSH? 10 or 0
(b) Draw the structures of the corresponding amino acids and mark the chiral centers with an asterisk.

Each amino acid correct 4, each chiral center correct 4

A mercapturic acid \mathbf{A} isolated from urine of a person who has been exposed to acrylonitrile $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\right.$ $\mathrm{CN})$ has the molecular formula $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$. The ${ }^{1} \mathrm{H}$-NMR spectrum of \mathbf{A} in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ is shown in Figure 1. When the product is pretreated with $\mathrm{D}_{2} \mathrm{O}$, the signals at $\delta 12.8$ and $\delta 6.8$ are no longer present and the 4.4 signal 3 is simplified

Figure 1
III-2-2 (a) The NMR-signals correspond with protons in the following groups: $\mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}, \mathrm{OH}$ and NH. Indicate the appropriate proton group in the boxes for the signals 1-7.

Signals	1	2	3	4/5	6	7
Protons	OH	NH	CH	CH_{2}	CH_{2}	CH_{3}

3 points per correct signal

(b) How many carbon atoms are present in compound \mathbf{A} that do not carry any protons?

8 or 0
3
(c) Draw the structure of compound A. 20, no acetyl or $-\mathbf{C H}_{2}-\mathbf{C H}_{2}-\mathbf{C N} \quad \mathbf{- 1 0}$

Vitamin C (ascorbic acid) reacts with oxidants to give dehydroascorbic acid D

III-2-3 Eating fresh fruit and vegetables is healthy
\square because vitamin C forms a complex with GSH.
\square because vitamin C reacts with electrophilic compounds.

- because vitamin C removes oxidants and prevents undesired depletion of GSH.
\square for many reasons, but none of them has anything to do with GSH.
20 or 0

Theme IV - Chemistry Related to Light and Energy

Chemistry plays a major role in meeting our needs of light and energy. Our life is unthinkable without artificial light and energy for mobility.

Problem IV-1 Lighting Lamps

Score: 7 points

	1	2	3	4	5
Marks	$\mathbf{1 0}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{3 5}$	$\mathbf{5}$

Since 1891 lighting lamps have been manufactured in The Netherlands. The improvement today in comparison to the first lamp is enormous, especially with the introduction of the gas discharge lamps. The life-time has increased by orders of magnitude. The colour is also an important aspect. Rare earth metal compounds like CeBr_{3} are now included to reach a colour temperature of 6000 K in the lamp. These compounds are ionic solids at room temperature, and upon heating they sublime partially to give a vapour of neutral metal halide molecules. To achieve a high vapour pressure, the sublimation enthalpy should be as low as possible.

IV-1-1 Give a thermochemical cycle (Law of Hess) for sublimation of CeBr_{3}, via a vapour of mononuclear ions. ($H_{\mathrm{l}}=H_{\text {lattice }} ; H_{\mathrm{e}}=H_{\text {electrostatic }} ; H_{\mathrm{s}}=H_{\text {sublimation }} ; H$ is not absolute, H means $\Delta H)$

$$
\left(\mathrm{CeBr}_{3}\right)_{\text {latice }} \xrightarrow{-H_{1}} \mathrm{Ce}^{3+}+3 \mathrm{Br}^{-}
$$

$$
\mathrm{Ce}^{3+}+3 \mathrm{Br}^{-} \xrightarrow{+H_{\mathrm{e}}}\left(\mathrm{CeBr}_{3}\right)_{\text {molecule }}
$$

$$
\left(\mathrm{CeBr}_{3}\right)_{\text {latice }} \xrightarrow{+H_{\mathrm{s}}}\left(\mathrm{CeBr}_{3}\right)_{\text {molecule }} \quad ; H_{\mathrm{s}}=-H_{1}+H_{e}
$$

10 or 0

The lattice energy of the solid can be calculated using the Born-Landé formula:

$$
H_{1}=f \frac{Z_{+} Z_{-} A e^{2}}{r_{+}+r_{-}}\left(1-\frac{1}{n}\right)
$$

The factor $f e^{2}$ (necessary in order to calculate the lattice energy in $\mathrm{kJ} \mathrm{mol}^{-1}$) amounts to 139 when the ionic radii are substituted in nm . The Madelung constant A for the lattice is 2.985 . The Born exponent n is 11 . The charges of the ions Z_{+}and Z_{-}are integer numbers (Z_{-}is negative). For the calculation of the energy of gaseous CeBr_{3} (when formed from ions) the same Born-Landé formula can be used without A . The structure of CeBr_{3} in the gas phase is planar triangular. The radius of Ce^{3+} is 0.115 nm and of Br^{-}is 0.182 nm .

IV-1-2 Calculate the enthalpy of sublimation of CeBr_{3} (in integers; be aware of the signs!)
Answer: $H_{\mathrm{s}}=718 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Calculation:
$H_{1}=-\frac{139 \times 3 \times 1 \times 2.985}{0.297} \times \frac{10}{11}=-3810 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$H_{\mathrm{e}}=-3 \times \frac{139 \times 3 \times 1}{0.297} \times \frac{10}{11}+3 \times \frac{139 \times 1 \times 1}{0.297 \sqrt{3}} \times \frac{10}{11}=-3829 \mathrm{~kJ} \mathrm{~mol}^{-1}+737 \mathrm{~kJ} \mathrm{~mol}^{-1}=-3092 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$H_{\mathrm{s}}=3810-3092=718 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$H_{l}=8$ points, $H_{e}=14$ points, $H_{s}=3$ points
Each mistake - 3 points

Attempts to make a better lamp have been undertaken by adding a stoichiometric amount of CsBr to the CeBr_{3} in the lamp leading at room temperature to solid CsCeBr_{4}. When the sublimation temperature decreases the life time of the lamp will increase likewise. The CsCeBr_{4} lattice has a NaCl structure with Cs^{+}as cations and tetrahedral $\mathrm{CeBr}_{4}{ }^{-}$as complex anions. Sublimation of CsCeBr_{4} leads to a vapour of CsBr and CeBr_{3} molecules.

IV-1-3 Give the reaction equations of the thermochemical cycle (Law of Hess) for this process in which some steps involve CeBr_{4}^{-}ions, mononuclear ions and/or neutral molecules in the gas phase.

Step 1:
$\left(\mathrm{CsCeBr}_{4}\right)_{\text {latice }} \xrightarrow{+\mathrm{H}_{1}} \mathrm{Cs}^{+}+\mathrm{CeBr}_{4}^{-}$

Step 3: $\mathrm{Ce}^{3+}+3 \mathrm{Br}^{-} \xrightarrow{+\mathrm{H}_{3}}\left(\mathrm{CeBr}_{3}\right)_{\text {molecule }}$

Total:

$$
\left(\mathrm{CsCeBr}_{4}\right)_{\text {lattice }} \xrightarrow{+H_{\text {total }}}\left(\mathrm{CeBr}_{3}\right)_{\text {molecule }}+(\mathrm{CsBr})_{\text {molecule }}
$$

25 or 0, all steps are interchangable

IV-1-4 Calculate the enthalpy of sublimation of CsCeBr_{4} (in integers). Use the Born-Landé formula for all steps in the process and report the separate energies also (be aware of the signs!). The Madelung constant for NaCl is 1.75 . The $\mathrm{Cs}-\mathrm{Ce}$ distance in the lattice is 0.617 nm . The CeBr_{4}^{-}anion is a tetrahedron in which the ratio between the edge and the distance between a corner of the tetrahedron and the centre of gravity (body-radius) amounts to $(2 \sqrt{6}) / 3=1.633$. The Born exponent of CsBr is 11 . The radius of Cs^{+}is 0.181 nm .

Answer Step 1: $H_{1}=+358 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \mathbf{8}$
Calculation:
The lattice energy of CsCeBr_{4} with opposite sign is
$H_{1}=+\frac{139 \times 1 \times 1 \times 1.75}{0.617} \times \frac{10}{11}=+358 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer Step 2: $H_{2}=+3543 \mathrm{~kJ} \mathrm{~mol}^{-1}$
12
Calculation:
CeBr_{4}^{-}in the gas phase is
$H_{2}=4 \times \frac{3 \times 1 \times 139}{0.297} \times \frac{10}{11}-6 \times \frac{1 \times 1 \times 139}{0.297 \times \frac{2}{3} \sqrt{6}} \times \frac{10}{11}=5106-1563=+3543 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer Step 3: $H_{3}=-3092 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \mathbf{5}$

Calculation:

The electrostatic energy in the gas phase of CeBr_{3} is (see answer IV-1-2):
$H_{3}=-3 \times \frac{139 \times 3 \times 1}{0.297} \times \frac{10}{11}+3 \times \frac{139 \times 1 \times 1}{0.297 \sqrt{3}} \times \frac{10}{11}=-3829+737=--3092 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer Step 4: $H_{4}=-_348 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Calculation:
The electrostatic energy in the gas phase of CsBr is
$H_{4}=-\frac{139 \times 1 \times 1}{0.363} \times \frac{10}{11}=-348 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer total sum: $H_{\text {total }}=+461 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \mathbf{5}$
Calculation:
$H_{\text {total }}=H_{1}+H_{2}+H_{3}+H_{4}=+358+3543-3092-348=+461 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Each mistake - 3 points

IV-1-5 Conclusion in relation to the previous answers: Was adding CsBr a good idea? Mark the correct answer.
\square Adding CsBr is counterproductive
\square Adding CsBr has no influence

- Adding CsBr is advantageous
\square From these data no clear answer can be given 5

Problem IV-2 Red Ruby

Score: 5 points

	1	2	3	4	5
Marks	$\mathbf{2 0}$				

Ruby crystals have a deep red colour and are well known for their use in jewellery. Not many people know that the heart of the first laser, built in 1960 by Maiman, was a big ruby crystal. The red colour of ruby originates from the absorption of light by Cr^{3+} ions that are incorporated in colourless aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ crystals. The Cr^{3+} ion has 3 electrons in the $3 d$ shell and the absorption of light is due to electronic transitions between $3 d$ orbitals of lower and higher energy.
N.B.: A colour picture of the ruby crystal is shown in the Appendix.

IV-2-1 Indicate which of the four absorption spectra belongs to ruby.

20

Figure 1

The rod used in ruby lasers is a cylinder with a length of 15.2 cm and a diameter of 1.15 cm . The amount of Cr^{3+} ions is 0.050 mass $\%$. The density of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is $4.05 \mathrm{~g} \mathrm{~cm}^{-3}$. The atomic mass of $\mathrm{Cr}=$ 52 u . $\left(1 \mathrm{u}=1.67 \times 10^{-27} \mathrm{~kg}\right)$.

IV-2-2 Calculate how many Cr^{3+} ions are in this laser rod.
Answer: $3.68 \times 10^{20} \mathrm{Cr}^{3+}$ ions.

Calculation:

The volume of the rod is $\pi r^{2} l=\pi \times 0.575^{2} \times 15.2=15.79 \mathrm{~cm}^{3}$. $\quad \mathbf{5}$
The total weight is $15.79 \times 4.05=63.94 \mathrm{~g}$. $\mathbf{5}$
The amount of Cr is then $0.05 \% \times 63.94=0.0319 \mathrm{~g}$. $\mathbf{5}$
0.0319 g of Cr corresponds to $\left(0.0319 \times 10^{-3} \mathrm{~kg}\right) /\left(52 \times 1.67 \times 10^{-27} \mathrm{~kg}\right)=3.68 \times 10^{20} \mathrm{Cr}^{3+}$ ions. $\mathbf{5}$

In rubies the Cr^{3+} ions are coordinated by an octahedron of 6 oxygen ions. The shape of the five $3 d$ orbitals is shown below. The box below shows the splitting of the five $3 d$ orbitals into a group of three orbitals at lower energy ($t_{2 \mathrm{~g}}$) and a group of two at higher energy (e_{g}).

IV-2-3 Indicate in the boxes below which of the $3 d$ orbitals $\left(d_{\mathrm{z}}^{2}, d_{\mathrm{xy}}, d_{\mathrm{yz}}, d_{\mathrm{x}-\mathrm{y}}^{2}{ }^{2}, d_{\mathrm{xz}}\right)$ belong to the $t_{2 \mathrm{~g}}$ group and which belong to the e_{g} group.

$d_{x^{2}-y^{2}}$

$d_{y z}$
\square
e_{g} \square
$\mathrm{d}_{z^{2}}$
$d_{x z}$

\square
20 or 0

IV-2-4 Indicate with arrows the distribution and the direction of the magnetic spin moment of the three $3 d$ electrons of Cr^{3+} over the five d orbitals in the lowest energy state of Cr^{3+}.

The ruby is placed on a (non-magnetic) scale. When the scale is in balance (Figure 2) a magnet is placed directly under the side with the ruby.

Figure 2
IV-2-5 Indicate what will happen with the ruby (mark the correct answer)

- The magnet attracts the ruby (the ruby moves down)
\square The magnet has no influence on the ruby (the ruby does not move)
\square The magnet repels the ruby (the ruby moves up)
The magnet has an oscillating effect on the ruby (the ruby moves up and down) 20 or 0

Problem IV-3 Vehicle Traction Batteries

Score: 5 points

	1	2	3	4
Marks	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$

Battery-powered electric vehicles (EV's) are likely to become increasingly common in the next 50 years because of growing concern over pollution caused by vehicles using combustion engines. The reason for the current meagre commercial success of EV's is that the battery specifications must have a performance and cost profile comparable to conventionally powered vehicles.
Lead-acid batteries are extensively used as portable power sources for vehicles and traction. A leadacid battery capable of efficient recharging has an energy density of $45 \mathrm{~Wh} / \mathrm{kg}$.
In the current evolution of EV batteries, the most promising long-term solution is the rechargeable light weight lithium-ion battery. Such batteries are under intensive investigation worldwide and hold also promise for the storage of electricity from solar cells. Their weight is $1 / 3$ of a lead-acid battery. Lithium is used as a negative electrode. It has a high specific capacity and electrode potential. A common positive electrode material is the environmentally benign spinel-type $\mathrm{LiMn}_{2} \mathrm{O}_{4}$. The spinel structure comprises a matrix of cubic close-packed oxide ions, stabilised by lithium ions in tetrahedral sites and manganese ions in octahedral sites. In $\mathrm{LiMn}_{2} \mathrm{O}_{4}$ half of the manganese ions has an oxidation state +3 and half the oxidation state +4 .

A lead-acid battery is represented by:

$$
\mathrm{Pb}(\mathrm{~s})\left|\mathrm{PbSO}_{4}(\mathrm{~s})\right| \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\left|\mathrm{PbSO}_{4}(\mathrm{~s})\right| \mathrm{PbO}_{2}(\mathrm{~s}) \mid(\mathrm{Pb}(\mathrm{~s}))
$$

A lithium battery is represented by:
$\mathrm{Li}(\mathrm{s}) \mid \mathrm{Li}^{+}$-conducting (solid) electrolyte(s) $\mid \mathrm{LiMn}_{2} \mathrm{O}_{4}(\mathrm{~s})$
Upon discharge the insertion product $\mathrm{Li}_{2} \mathrm{Mn}_{2} \mathrm{O}_{4}$ is formed. Charging the battery leads to the products $\mathrm{Li}(\mathrm{s})$ and $\mathrm{LiMn}_{2} \mathrm{O}_{4}$.

IV-3-1 Give the electrochemical reactions at the electrodes of the lead-acid battery during discharge.

$$
\text { Reaction at the negative electrode: } \quad \mathbf{1 0}
$$

$\mathrm{Pb}(\mathrm{s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \longrightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$

Reaction at the positive electrode: $\mathbf{1 5}$

$\mathrm{PbO}_{2}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

IV-3-2 Give the electrochemical reactions at the electrodes of the lithium-ion battery upon discharge.
Reaction at the negative electrode: $\mathbf{1 0}$

$$
\mathrm{Li}(\mathrm{~s}) \longrightarrow \mathrm{Li}^{+}+\mathrm{e}^{-}
$$

```
Reaction at the positive electrode:
15
Li+}+\mp@subsup{\textrm{e}}{}{-}+\mp@subsup{\textrm{LiMn}}{2}{}\mp@subsup{\textrm{O}}{4}{}(\textrm{s})\longrightarrow\mp@subsup{\textrm{Li}}{2}{}\mp@subsup{\textrm{Mn}}{2}{}\mp@subsup{\textrm{O}}{4}{}(\textrm{s}
```

IV-3-3 Give the coordination numbers of the lithium ions and of the manganese ions in the spinel structure of $\mathrm{LiMn}_{2} \mathrm{O}_{4}$.

10

```
Mn-ions: 6
```

10

A typical family car of 1000 kg requires at least 5 kWh of energy to move 50 km , which corresponds with the consumption of about 5.0 L or 3.78 kg of petrol. This conventional car has a petrol tank volume of 50 L . The weight of the tank is 10 kg . The fuel consumption is $10 \mathrm{~km} \mathrm{~L}^{-1}$.

IV-3-4 Calculate the extra weight of the car if the petrol tank is replaced by an equivalent battery in an EV based on (a) lead-acid battery and (b) lithium battery. Assume that in all cases the engine efficiency is the same.
(a) Extra weight of a lead-acid battery car:

Answer: 1063.2 kg
Calculation:
Distance of the petrol car $=500 \mathrm{~km} \rightarrow 50 \mathrm{kWh}$
Weight of petrol tank plus fuel: $10 \mathrm{~kg}+50 \times(3.4 / 4.5)=47.8 \mathrm{~kg}$
Weight of the Pb-battery: $\quad 50,000 / 45=1111 \mathrm{~kg}$
Extra weight for Pb-battery car: $1111-47.8=1063.2 \mathrm{~kg}$
Name: Student Code:
(b) Extra weight of a lithium battery car: $\mathbf{1 0}$

Answer: 322.2 kg
Calculation:
Weight of the Li-battery: $\quad 1 / 3$ of the Pb -battery $\boldsymbol{\rightarrow} 1111 \mathrm{~kg} / 3=370 \mathrm{~kg}$
Extra weight for Li-battery car: $370-47.8=322.2 \mathrm{~kg}$
Periodic Table of Elements

$$
\text { Metals } \quad \text { Non-metals }
$$

오

$$
8
$$

$$
\begin{aligned}
& \text { Atomic weights based on }{ }^{2} \mathrm{C}=12 \\
& \text { (Numbers) }=\text { most stable isotope }
\end{aligned}
$$

f block

$$
\begin{gathered}
0^{s} \cdot 291 \\
10 \\
99
\end{gathered}
$$

$$
\frac{85}{8 E_{8}}
$$

$$
95.94
$$

$$
\begin{array}{cc}
8 \varepsilon 6 \cdot v 5 & 966^{2} \cdot 15 \\
\mathrm{uW} & 10 \\
\mathrm{sz} & \mathrm{vz}
\end{array}
$$

$$
\begin{array}{c|c}
\text { כy } & \mathrm{M}_{\mathrm{sL}} \\
\hline(86) & 56.56
\end{array}
$$

$$
\begin{aligned}
& \text { s|piow uo!!!supis } \\
& \text { भग्ᅵव p }
\end{aligned}
$$

$$
183.85 \quad 186.21
$$

$$
\begin{array}{l|l}
106 & 107 \\
\text { Unh } & \text { Uns }
\end{array}
$$

(¿)

$$
\begin{array}{c|c|c}
58 & 59 & 60 \\
\mathrm{Ce} & \mathrm{Pr} & \mathrm{Nd} \\
140.12 & 140.91 & 144.24
\end{array}
$$

$$
\begin{array}{c|c}
61 & 62 \\
\text { Pm } & \text { Sm } \\
(145) & 150.36
\end{array}
$$

Scientific Committee of the $34^{\text {th }}$ International Chemistry Olympiad

Chairperson:

Prof.dr. B. Zwanenburg
University of Nijmegen

Section Theory:

Prof.dr.ir. H. van Bekkum
Prof.dr. H.P.J. Bloemers
Prof.dr. F.B. van Duijneveldt
Prof.dr. J.B.F.N. Engberts
Dr. G.A. van der Marel
Prof.dr. E.W. Meijer
Prof.dr. A. Meijerink
Prof.dr. A. Oskam
Prof.dr. J. Schoonman
Prof.dr. A.J. Schouten
Ms. Prof.dr. N.H. Velthorst
Prof.ir. J.A. Wesselingh
Delft University of Technology
University of Nijmegen
University of Utrecht
University of Groningen
University of Leiden
Eindhoven University of Technology
University of Utrecht
University of Amsterdam
Delft University of Technology
University of Groningen
Free University, Amsterdam
University of Groningen

Section Practical:

Prof.dr. J.F.J. Engbersen
Dr. E. Joling
Dr. A.J.H. Klunder
Dr. A.J. Minnaard
Dr. J.A.J.M. Vekemans
Mr.Ing. T. van Weerd
Dr. W.H. de Wolf

Consultants:

Drs. P. de Groot
Drs. A.M Witte
Drs. W. Davids

Secretariat:

Twente University of Technology
University of Amsterdam
University of Nijmegen
University of Groningen
Eindhoven University of Technology
University of Nijmegen
Free University, Amsterdam

Dr. R. Ruinaard
J. Brinkhorst

Ms. M.V. Versteeg

34th International Chemistry Olympiad Groningen, Monday, 8 July 2002
 Practical Examination

Chemistry and the Quality of Life go Hand in Hand

Enzymatic Hydrolysis of Methyl \mathbf{N}-Acetyl-phenylalaninate

Synthesis of Benzylhydantoin

Determination of Iron in Iron Pills

Introductory Remarks

- At all times while you are in the laboratory you should wear safety spectacles or your own spectacles if they have been approved. Use only a pipette filler bulb for pipetting. Eating of any kind of food is strictly prohibited in the laboratory.
- Participants are expected to work safely, to behave socially and to keep equipment and work environment clean. Violation of these rules may result in penalty points. Do not hesitate to ask a laboratory assistant if you have any questions concerning safety issues.
- When you enter the laboratory, check the emergency exits and the place of the safety shower.
- Please carefully read the text of the entire experimental task and study the layout of the answer forms before you begin your experimental work. Check where instruments are located. You have 15 minutes to prepare yourself for the experimental tasks.
- Work may only begin when the start signal is given.
- You have 5 hours to complete all of the experimental tasks, and record your results on the answer sheets. There will be a pre-warning 15 minutes before the end of your time. You must stop your work immediately after the stop command is given. A delay in doing this by 5 minutes will lead to cancellation of the current task and will result in zero points for that task.
- This practical examination comprises three experiments. In order to use the available time efficiently, it is necessary to make a work plan. Read the content of all three experiments carefully. Conducting experiments simultaneously may save a considerable amount of time.
- Write your name and personal identification code (posted at your work station) in the appropriate box of the answer sheets.
- All results must be written in the answer boxes on the answer sheets. Data written elsewhere will not be marked. Do not write anything on the back of your answer sheets. If you need more paper for working or a replacement answer sheet, request it from the laboratory assistant.
- When you have finished the examination, you must put all papers into the envelope provided, then you must seal the envelope. Only papers in the sealed envelope will be marked.
- Do not leave the examination room until you have permission to do so. A receipt for your sealed envelope will be issued to you as you leave.
- Use only the tools and calculator provided.
- A copy of the Periodic Table of the Elements is provided.
- The number of significant figures in numerical answers must conform to the rules of evaluation of experimental error. The inability to perform calculations correctly will result in penalty points, even if your experimental technique is flawless.
- This examination has 5 pages of answer sheets.
- An official English-language version is available only on request.

Safety

The rules described in the Preparatory Problems "safety rules" should be followed strictly.

Disposal of waste chemicals, spills, and glassware

Organic filtrates and organic washings and any other waste should be placed in the waste beaker or bottle.

Use the appropriate waste containers for disposals of chemical and other waste materials.
Broken glass should be placed in the waste bucket.

Cleaning up

The lab bench should be wiped clean with a wet tissue.

Instructions for the Texas Instruments TL-83 plus calculator

The following instruction is sufficient for this Olympiad. This machine is a gift from Texas Instruments to mark this Olympiad. The calculator is able to perform many, many calculations, more than necessary for this examination. Other options can be found in the book, but do not use the book today.

On: Press on the button 'ON'.
Off: First press the button '2nd' and then press the button 'ON'.
Adding, subtracting, multiplying and dividing is as usual:
e.g. adding: Number $1+$ Number 2 'enter'

Brackets can easily be used (on the panel above 8 and 9 resp.).
The buttons for $\ln , \log , \mathrm{x}^{-1}$ and x^{2} are on the panel.
For e^{x} first press the button ' 2 nd, and then the button ' \ln '; press the number and 'enter'.
For 10^{x} first press the button ' 2 nd , and then the button 'log' ; press the number and 'enter'.
For V_{x} first press the button ' 2 nd, and then ' x^{2} '; press the number and 'enter'.
For the number $\mathrm{e}=2.71828$ first press the button ' 2 nd , and then press the button ' $-:-$ ' .
For the number $\pi=3.14$ first press the button ' $2{ }^{\text {nd }}$, and then press the button ' \wedge '.
In general: The yellow functions can be activated by first pressing ' 2 nd (yellow button) and then the desired function in yellow.

The screen can be cleared by pressing the 'clear' button.

Chemicals, glassware and equipment:

Microscale glassware kit

(a) Thermometer (on the bench)
(b) Chromatography column
(c) Thermometer adaptor
(d) Connector
(e) 2 Magnetic stirring bars
(f) Hirsch funnel
(g) One-way stopcock
(h) Distillation head 60 mm
(i) Filter flask 25 mL
(j) Connecting adaptor
(k) Sleeve stopper 8 mm septum
(l) Syringe polyethylene 1 mL
(m) Connector with support rod
(n) Centrifuge Tube 15 mL
(o) Distillation column
(p) Reaction tube $10 \times 100 \mathrm{~mm}$
(q) Erlenmeyer flask 10 mL
(r) Long neck flask 5 mL
(s) Short neck flask 5 mL
(t) Filter adapter
(u) Tubing PTFE $1 / 16$ "
(v) Spatula

Glassware and equipment

Sand bath (sand supplied separately) 1
Erlenmeyer (50 mL) 1
Burette (50 mL) 1
Burette clamp 1
Clamp holder with clamp 2
Support stand 2
Mortar and pestle 1
Beaker $100 \mathrm{~mL} \quad 1$
Measuring cylinder $10 \mathrm{~mL} \quad 1$
Volumetric flask $250 \mathrm{~mL} \quad 1$
Volumetric flask 100 mL 2
Glass funnel 1
Measuring pipette $10 \mathrm{~mL} \quad 2$
Pipetting balloon 1
Pasteur pipettes 10
Pasteur pipette bulbs 3
Weighing paper 20
Magnetic stirrer 1
Magnetic stirring bar 1
Pair of tweezers 1
Spoon 1
Screw cap bottle (large) for TLC 1
Thin layer plates $(5 \times 10 \mathrm{~cm}) \quad 4$
Capillary tubes for TLC (in sample tube) 5
Cuvets 1.000 cm 2
(in location Zernicke near the balances)
(in location Zernicke in sample tube)

Stirring rod	1
Sample tubes	4
Stopwatch	1
Sealing bag	2

Chemicals

Methyl N-acetyl-phenylalaninate (NAcPheOMe) 500 mg (exact weight $\pm 1 \mathrm{mg}$)
(S)-Phenylalanine (Phe) $\quad 500 \mathrm{mg}$ (exact weight $\pm 1 \mathrm{mg}$)

Sodium cyanate (NaOCN)
α-Chymotrypsin solution (0.05% in water)
300 mg
10 mL in a vial, available from the laboratory assistant
Iron pill in envelope
1 pill
Methanol (MeOH)
Hydrochloric acid (HCl) 4 M
Sodium hydroxide (NaOH) 0.1 M
Sodium hydroxide $(\mathrm{NaOH}) \quad 1 \mathrm{M}$
Propyl red solution (0.02% in ethanol)
Buffer solution $\mathrm{pH}=8$
Hydroxylamine. HCl solution $\left(\mathrm{H}_{2} \mathrm{NOH} . \mathrm{HCl}\right)$ 20 mL
50 mL
70 mL (exact titer is given in your examination paper)
3 mL in small vial
3 mL in small vial
150 mL
10 mL

$$
100 \mathrm{~g} \mathrm{~L}^{-1}
$$

1,10-Phenanthroline solution $1 \mathrm{~g} \mathrm{~L}^{-1}$
Di-isopropylether
Acetone (high purity)
20 mL

TLC eluent (2% formic acid in ethyl acetate)
pH-paper
50 mL
10 mL

Hi-flo filter aid
20 mL

Wash bottle with acetone (for cleaning)
Wash bottle with "demi" water
4 pieces
5 g
250 mL
500 mL

Available for general use

Cleaning paper
Sponge
Brush
Waste container
Parafilm

Equipment for general use

Hotplate (only in location Zernicke)
Ultrasonic bath
Vacuumpump
Spectrophotometer
Balance
UV lamp

R and S phrases

Acetone

Formula	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
Molecular weight	58.08
Melting point	$-95{ }^{\circ} \mathrm{C}$
Boiling point	$56^{\circ} \mathrm{C}$
Density	$0.79 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly flammable

S9 Keep container in a well-ventilated place
S16 Keep away from sources of ignition
S23 Do not breathe vapour
S33 Take precautionary measures against static discharges

Di-isopropyl ether

Formula	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$
Molecular weight	102.17
Melting point	$-85{ }^{\circ} \mathrm{C}$
Boiling point	$68{ }^{\circ} \mathrm{C}$
Density	$0.72 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly flammable

R19 May form explosive peroxides.
R66 Repeated exposure may cause skin dryness or cracking
R67 Vapours may cause drowsiness and dizziness
S9 Keep container in a well-ventilated place
S16 Keep away from sources of ignition - No smoking
S29 Do not empty into drains
S33 Take precautionary measures against static discharges

Ethanol

Formula	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
Molecular weight	46.08
Melting point	$-114{ }^{\circ} \mathrm{C}$
Boiling point	$78{ }^{\circ} \mathrm{C}$
Density	$0.78 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly Flammable

S7 Keep container tightly closed
S16 Keep away from sources of ignition

Ethyl acetate

Formula	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
Molecular weight	88.10
Melting point	$-84{ }^{\circ} \mathrm{C}$
Boiling point	$76{ }^{\circ} \mathrm{C}$
Density	$0.90 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly flammable
R36 Irritating to the eyes

R66 Repeated exposure may cause skin dryness or cracking
R67 Vapours may cause drowsiness and dizziness
S16 Keep away from sources of ignition - No smoking
S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advise
S33 Take precautionary measures against static discharges

Hydrochloric acid

Formula	HCl
Molecular weight	36.46
Density	0.909

R11 Highly flammable
R37/37 Irritating to eyes, respiratory system and skin

38
S16 Keep away from sources of ignition - No smoking
S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advise
S45 In case of accident of if you feel unwell, seek medical advise immediately (show the label where possible)
S7 Keep container tightly closed

Hydroxylamine hydrochloride

Formula	$\mathrm{H}_{3} \mathrm{NO} . \mathrm{HCl}$
Molecular weight	69.49
Melting point	$155{ }^{\circ} \mathrm{C}$
Density	$1.67 \mathrm{~g} / \mathrm{cm}^{3}$

R22 Harmful if swallowed
R36/38 Irritating to eyes and skin
R43 May cause sensitisation by skin contact
R48/22 Harmful: danger of serious damage to health by prolonged exposure if swallowed
R50 Very toxic to aquatic organisms
S22 Do not inhale dust
S24 Avoid contact with skin

S37 Wear suitable gloves
S61 Avoid release to the environment.

Methanol

Formula	$\mathrm{CH}_{4} \mathrm{O}$
Molecular weight	32.04
Melting point	$-98{ }^{\circ} \mathrm{C}$
Boiling point	$65{ }^{\circ} \mathrm{C}$
Density	

R11 Highly flammable

R23-25 Toxic by inhalation, in contact with skin and if swallowed R39/23Toxic: danger of very serious irreversible effects through
24/25 inhalation, in contact with skin and if swallowed
S7 Keep container tightly closed

S16 Keep away from sources of ignition -No smoking
S36/37 Wear suitable protective clothing and gloves
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)

1,10-Phenanthroline

Formula $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$
Molecular weight 180.20

Melting point
$117-120{ }^{\circ} \mathrm{C}$

R25 Toxic when swallowed

R50/53Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)
S60 This material and its container must be disposed of as hazardous waste
S61 Avoid release to the environment

L-Phenylalanine

Formula $\mathrm{C}_{9} \mathrm{H}_{1} \mathrm{NO}_{2}$
Molecular weight
Melting point 165.19
$270-275^{\circ} \mathrm{C}$

S24/25Avoid contact with skin and eyes

Sodium Cyanate

Formula	NaOCN
Molecular weight	65.00
Melting point	$550^{\circ} \mathrm{C}$

R22 Harmful if swallowed

R52/53Harmful to aquatic organisms, may cause long-term adverse effects
in the aquatic environment
S24/25Avoid contact with skin and eyes
S61 Avoid release to the environment

Sodium hydroxide

Formula	NaOH
Molecular weight	40.00
Melting point	$318^{\circ} \mathrm{C}$

R35 Causes severe burns

S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice

S37/39 Wear suitable gloves and eye/face protection
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)

Enzymatic Hydrolysis of Methyl \boldsymbol{N}-Acetyl-phenylalaninate

Introduction

α-Chymotrypsin, a protease enzyme recognizing derivatives of natural α-amino acids, catalyses the hydrolysis of esters. In this experiment the enzymatic hydrolysis of racemic methyl N-acetyl-phenylalaninate \mathbf{A} is investigated (Scheme).

The rate of formation of N -acetyl-phenylalanine \boldsymbol{B} can be monitored by titration with 0.100 M NaOH in the presence of propyl red as a pH indicator.

Propyl red (protonated form)
At $\mathrm{pH}<5$: pink; at $\mathrm{pH}>6$: yellow

Procedure

Note: the required amount of α-chymotrypsin will be supplied in a sample vial by the laboratory assistant on request.

Racemic methyl N-acetyl-phenylalaninate $A[500 \mathrm{mg}$, the exact weight ($\pm 1 \mathrm{mg}$) is indicated on the label of the vial marked as NacPheOMe] is transferred quantitatively into a 50 mL Erlenmeyer flask and dissolved in methanol ($\sim 2.5 \mathrm{~mL}$). Subsequently, propyl red (0.02% solution in ethanol; 4 drops) is added. The kinetic experiment is started by adding α-chymotrypsin (10.0 mL of a 0.05% solution in distilled water) in one portion (start the stopwatch).

When the reaction mixture turns pink, it is immediately titrated with 0.100 M NaOH until the colour changes to yellow. When the pink colour reappears, add just enough titrant to restore the pale yellow colour, swirling the flask continually during the addition. You only need to record the reading on the burette every 5 minutes. (Note: at the beginning colour changes occur very frequently.)

Monitor the reaction for 75 minutes. A graph showing the amounts of NaOH consumed in mL versus time is constructed, in order to visualize the kinetic course of this enzymatic reaction.

34th IChO Laboratory Task
Enzymatic Hydrolysis of Methyl N -Acetylphenylalaninate

Answer Sheet 1

Score 12 points

	1	2	3	4	5	6
Marks	$\mathbf{1 0}$	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$

1 Amount of the starting racemic methyl N-acetyl-phenylalaninate \mathbf{A}

$$
\mathrm{mg}=\quad \mathrm{mmol}
$$

2 Record the time in minutes and the total consumption of NaOH in mL (accuracy $\pm 0.05 \mathrm{~mL}$), according to the scheme below. Final recording after 75 minutes.

Time (\min)															75
NaOH (mL)															

3 Construct a graph of the total consumption of NaOH vs time on the supplied graph paper.
Put minutes on the x -axis: 5 min . per cm
Put mL NaOH on the y -axis: $\quad 1.0 \mathrm{~mL}$ per cm

4 Calculate the amount of 0.100 M NaOH consumed in this experiment in mmol Answer:

Calculation:

Enzymatic Hydrolysis... (Cont'd)
Answer Sheet 2
$5 \quad$ Calculate the degree of hydrolysis of methyl N-acetyl- (R, S)-phenylalaninate \mathbf{A} in $\mathrm{mol} \%$ Answer:

Calculation:

6 Which of the following statements is in accordance with your experimental results? Mark the appropriate box.
$\square \quad$ The enzyme catalyses the hydrolysis to give methyl N-acetyl-(S)-phenylalaninate and N -acetyl-(R)-phenylalanine.
\square The enzyme catalyses the hydrolysis to give N-acetyl- (R, S)-phenylalanine.
\square The enzyme catalyses the hydrolysis to give methyl N-acetyl- (R)-phenylalaninate and N -acetyl-(S)-phenylalanine
$\square \quad$ The enzyme loses its catalytic activity during the course of the reaction.

Synthesis of Benzylhydantoin

Introduction

α-Amino acids are the building blocks for peptides and proteins. They are also frequently used as starting material for the synthesis of pharmaceuticals. In this experiment natural S-phenylalanine \mathbf{A} is converted in two steps into benzylhydantoin \mathbf{C}, which is a useful intermediate for the preparation of various physiologically active derivatives.

STEP 1

A
Molecular Weight $=165.19$

B
Molecular Weight $=208.22$

STEP 2

C
Molecular Weight $=190.20$

Procedure

STEP 1

Retain a tiny amount of starting material A for the TLC analysis (see below). A longnecked round-bottomed flask is charged with (S)-phenylalanine $A(500 \mathrm{mg}, 3 \mathrm{mmol}$, the exact amount is indicated on the label of the vial), sodium cyanate ($300 \mathrm{mg}, 4.6$ mmol), water (3 mL) and a stirring bar. Two drops of aqueous sodium hydroxide (1 M) are added to the stirred suspension. The flask is equipped with a condenser (distillation column) and the reaction mixture is heated to $80^{\circ} \mathrm{C}$ on a sand bath while stirring magnetically.

Important

In order to reach the appropriate temperature in time and not lose too much time, start the electric heating of the sand bath immediately at the beginning of this experiment. Check the temperature of the sand bath regularly and carefully with a thermometer.

After heating the reaction mixture at $80^{\circ} \mathrm{C}$ for at least 30 minutes, the resulting clear solution is cooled to room temperature and poured into a small Erlenmeyer flask. Rinse the round-bottomed flask with a little water. The solution is acidified by dropwise addition of hydrochloric acid (4 M) to $\mathrm{pH}<3$ with magnetic stirring. Some water is added to the resulting white suspension in order to facilitate stirring.

The white precipitate is then filtered off by suction, washed with ample water (on the filter) and then washed twice with a small amount of di-isopropyl ether to remove most of the adhering water. The urea derivative B is left on the filter under suction for at least 3 minutes to remove as much solvent as possible.

A small amount of the obtained urea derivative \mathbf{B} is retained for TLC-analysis later.

STEP 2

The urea derivative \mathbf{B} is now transferred into a long-necked round-bottomed flask and hydrochloric acid ($4 \mathrm{M}, 3 \mathrm{~mL}$) is added. A stirring bar is introduced and the suspension is stirred thoroughly whilst heating at $80^{\circ} \mathrm{C}$ on a sand bath. A clear solution is obtained. After a reaction time of 30 minutes, the reaction mixture, which may already contain some precipitate, is cooled to room temperature. The obtained suspension is filtered by suction, washed thoroughly with water and finally washed twice
with a small amount of di-isopropyl ether. The product is left on the filter under suction for at least 3 minutes. It is then collected on a filter paper and dried in the air for at least 30 minutes.

The final product \mathbf{C}, its precursor \mathbf{B} and starting material \mathbf{A} (see above) are subjected to TLC-analysis. For this purpose small amounts of either compound are dissolved in a tiny amount of pure acetone. Small samples of these solutions are applied to a TLC plate, using the supplied capillary tubes. The analysis is carried out with two TLC plates in one run. The TLC-plates are developed with a solution of 2% formic acid in ethyl acetate as the eluent. After the elution the TLC-plates are analysed using a UV-lamp. The starting line, solvent front and the UV-active spots are clearly marked with a pencil. Copy the diagram in the box on the answer sheet. The R_{f} values are determined. Finally, the TLC-plate with the best analysis is wrapped in parafilm and placed in a plastic bag with a sealing strip.

The final product \mathbf{C} is transferred into a sample vial of which the empty weight has been predetermined (weight is indicated on the label). Weigh the vial with product and calculate the yield of the product \mathbf{C}.

The examination committee will check the quality of the benzylhydantoin that you have prepared by determining its melting point using an automatic melting point apparatus.

34 ${ }^{\text {th }}$ IChO Laboratory Task

Synthesis of Benzylhydantoin

Weight of your starting material \mathbf{A} (see label on the vial):
mg

Weight of the empty sample vial:
mg
(see label on the vial: YOUR PRODUCT)

1 Weight of the sample vial containing your product \mathbf{C} : mg

2 Amount of benzylhydantoin \mathbf{C} obtained: mg

Calculate the yield of benzylhydantoin \mathbf{C} :
Answer: \%

Calculation:
$3 \quad R_{\mathrm{f}}$ value of urea derivative \mathbf{B}
Answer:
Calculation:
$4 \quad R_{\mathrm{f}}$ value of benzylhydantoin \mathbf{C}
Answer:
Calculation:

Synthesis of Benzylhydantoin (Cont'd)

6 Conclusions from the TLC analysis:
Compound B:
\square is pure
\square contains some \mathbf{A}
\square contains several contaminants
Compound \mathbf{C} :
\square is pure
\square contains some \mathbf{B}
\square contains some \mathbf{A} and \mathbf{B}
\square contains several contaminants
$7 \quad$ Appearance of benzylhydantoin \mathbf{C}, mark what is appropriate for your product.
\square White colour
\square Yellowish colour
\square Sticky
Crystalline

- Powder
$\mathbf{8}$ Melting point of benzylhydantoin \mathbf{C} will be determined later by the examination committee ${ }^{\circ} \mathrm{C}$

Place your packed TLC plate (see procedure) in an envelope with your name and student number.

Determination of Iron in Iron Pills

Introduction

Iron is an essential component of hemoglobin, transporting oxygen in the blood to all parts of the body. It also plays a vital role in many metabolic reactions. Iron deficiency can cause anaemia resulting from low levels of hemoglobin in the blood. Iron deficiency is the most widespread mineral nutritional deficiency worldwide. One way to reduce iron shortage is by treatment with iron pills.
The active ingredient in the iron pill to be examined, is iron(II) present as iron(II) fumarate. Besides this organic iron(II) compound the pill contains other compounds such as binding agents. The structure of fumaric acid is:

Fumaric acid
Iron(II) and 1,10-phenanthroline form an orange/red coloured complex $\left[\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3} \mathrm{Fe}\right]^{2+}$. The absorbance of this complex, determined at 510 nm in a buffer solution $(\mathrm{pH}=8)$ is a measure for the iron content of the iron pill. Since 1,10-phenanthroline only binds to iron(II) and iron(II) is readily oxidized to iron(III), hydroxylammonium chloride is added to reduce all iron(III) to iron(II). A simplified reaction scheme is:

$$
2 \mathrm{NH}_{2} \mathrm{OH}+4 \mathrm{Fe}^{3+} \rightarrow \mathrm{N}_{2} \mathrm{O}+4 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{Fe}^{2+}
$$

1,10-Phenanthroline

Procedure

The weight of the iron pill is determined
with an accuracy of 1 mg using a balance. The pill is carefully pulverized in a mortar and transferred quantitatively into a 100 mL beaker with the aid of a small amount of distilled water. Hydrochloric acid ($5 \mathrm{~mL}, 4 \mathrm{M}$) is added. The content of the beaker is heated up to approximately $60{ }^{\circ} \mathrm{C}$ on a hotplate. The solution turns a yellow colour.

The beaker is then placed in an ultrasonic bath for at least 5 minutes. The beaker is kept in place by styrofoam. The suspension is filtered by suction using a Hirsch funnel containing a small layer of moistened hi-flow filter aid pressed onto the filter. The hi-flow filter aid is washed with ample distilled water. The filtrate is carefully transferred into a volumetric flask (250 mL) and the final volume adjusted by adding distilled water and with regular mixing. An amount of 10 mL is pipetted from this solution and transferred into a volumetric flask of 100 mL . Again the volume is adjusted with distilled water while mixing the content of the flask.
From this solution, 10 mL is pipetted and transferred into a volumetric flask of 100 mL . Subsequently, 1,10 -phenanthroline solution (10 mL) and hydroxylammonium chloride solution (1 mL) are added. Then the volume is adjusted with buffer solution (pH 8).

The absorbance of this solution is measured with a spectrophotometer at 510 nm against water as a blank in a 1.000 cm cuvet.
Calculate the amount of iron in the iron pill on basis of the known molar absorptivity (extinction coefficient, ε) of the iron(II)phenanthroline complex at 510 nm . The molar absorptivity of the iron(II)phenanthroline complex at 510 nm is $11100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

Important

In order to eliminate deviations in absorbance typically connected to the spectrophotometer used, a correction factor is denoted on the spectrophotometer you will be using for your experiment. The absorbance observed must be multiplied by this factor in order to obtain the correct absorbance of the solution of the iron complex.
Name: Student Code:

34 ${ }^{\text {th }} \mathbf{I C h O}$ Laboratory Task

Determination of Iron in Iron Pills

Answer Sheet 5
Score 10 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{4 0}$	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{1 5}$

1 Weight of the iron pill mg
Number of the spectrophotometer

Correction factor

2 Reading of the spectrophotometer: \quad; corrected absorbance: \quad AU

3 Concentration of iron(II)phenanthroline complex in the cuvet: $\mathrm{mmol} \mathrm{L}^{-1}$
Calculation:

4 Total amount of iron(II) in the pill:
mg
Calculation:

5 Calculate the iron content of the pill in weight\%
Answer:
Calculation:
69
7 m
168.93

$$
\begin{array}{|c|c}
70 & 71 \\
Y 16 & L U \\
173.04 & 174.97
\end{array}
$$ \%

$$
\begin{array}{c|c|c|c}
100 & 101 & 102 & 103 \\
\text { Fm } & \text { Md } & \text { No } & \mathrm{Lr}
\end{array}
$$

III

 49 164.93
 (247) (247) (251

(261) (262) (263) (?)

*Lanthanides

 **Actinides

$$
\begin{aligned}
& \text { Metals Non-metals }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array} \\
& \begin{array}{l}
20.180 \\
18 \\
A r
\end{array} \\
& \begin{array}{c|c|c|c|c|}
\hline P & & & \\
30.974 & 32.066 & 35.453 & 39.948
\end{array}
\end{aligned}
$$

$\underset{\sim}{3}$
$\begin{array}{r}98 \\
{ }_{6} \cdot 1 \varepsilon 1\end{array}$

84	Po	Af
(209)	Rn	
(210)	(222)	

Scientific Committee of the $34^{\text {th }}$ International Chemistry Olympiad

Chairperson:

Prof.dr. B. Zwanenburg
University of Nijmegen

Section Theory:

Prof.dr.ir. H. van Bekkum
Prof.dr. H.P.J. Bloemers
Prof.dr. F.B. van Duijneveldt
Prof.dr. J.B.F.N. Engberts
Dr. G.A. van der Marel
Prof.dr. E.W. Meijer
Prof.dr. A. Meijerink
Prof.dr. A. Oskam
Prof.dr. J. Schoonman
Prof.dr. A.J. Schouten
Ms. Prof.dr. N.H. Velthorst
Prof.ir. J.A. Wesselingh
Delft University of Technology
University of Nijmegen
University of Utrecht
University of Groningen
University of Leiden
Eindhoven University of Technology
University of Utrecht
University of Amsterdam
Delft University of Technology
University of Groningen
Free University, Amsterdam
University of Groningen

Section Practical:

Prof.dr. J.F.J. Engbersen
Dr. E. Joling
Dr. A.J.H. Klunder
Dr. A.J. Minnaard
Dr. J.A.J.M. Vekemans
Mr.Ing. T. van Weerd
Dr. W.H. de Wolf

Consultants:

Drs. P. de Groot
Drs. A.M Witte
Drs. W. Davids

Secretariat:

Twente University of Technology
University of Amsterdam
University of Nijmegen
University of Groningen
Eindhoven University of Technology
University of Nijmegen
Free University, Amsterdam

Dr. R. Ruinaard
J. Brinkhorst

Ms. M.V. Versteeg

34th International Chemistry Olympiad Groningen, Monday, 8 July 2002
 Practical Examination

Chemistry and the Quality of Life go Hand in Hand

Enzymatic Hydrolysis of Methyl \mathbf{N}-Acetyl-phenylalaninate

Synthesis of Benzylhydantoin

Determination of Iron in Iron Pills

Introductory Remarks

- At all times while you are in the laboratory you should wear safety spectacles or your own spectacles if they have been approved. Use only a pipette filler bulb for pipetting. Eating of any kind of food is strictly prohibited in the laboratory.
- Participants are expected to work safely, to behave socially and to keep equipment and work environment clean. Violation of these rules may result in penalty points. Do not hesitate to ask a laboratory assistant if you have any questions concerning safety issues.
- When you enter the laboratory, check the emergency exits and the place of the safety shower.
- Please carefully read the text of the entire experimental task and study the layout of the answer forms before you begin your experimental work. Check where instruments are located. You have 15 minutes to prepare yourself for the experimental tasks.
- Work may only begin when the start signal is given.
- You have 5 hours to complete all of the experimental tasks, and record your results on the answer sheets. There will be a pre-warning 15 minutes before the end of your time. You must stop your work immediately after the stop command is given. A delay in doing this by 5 minutes will lead to cancellation of the current task and will result in zero points for that task.
- This practical examination comprises three experiments. In order to use the available time efficiently, it is necessary to make a work plan. Read the content of all three experiments carefully. Conducting experiments simultaneously may save a considerable amount of time.
- Write your name and personal identification code (posted at your work station) in the appropriate box of the answer sheets.
- All results must be written in the answer boxes on the answer sheets. Data written elsewhere will not be marked. Do not write anything on the back of your answer sheets. If you need more paper for working or a replacement answer sheet, request it from the laboratory assistant.
- When you have finished the examination, you must put all papers into the envelope provided, then you must seal the envelope. Only papers in the sealed envelope will be marked.
- Do not leave the examination room until you have permission to do so. A receipt for your sealed envelope will be issued to you as you leave.
- Use only the tools and calculator provided.
- A copy of the Periodic Table of the Elements is provided.
- The number of significant figures in numerical answers must conform to the rules of evaluation of experimental error. The inability to perform calculations correctly will result in penalty points, even if your experimental technique is flawless.
- This examination has 5 pages of answer sheets.
- An official English-language version is available only on request.

Safety

The rules described in the Preparatory Problems "safety rules" should be followed strictly.

Disposal of waste chemicals, spills, and glassware

Organic filtrates and organic washings and any other waste should be placed in the waste beaker or bottle.

Use the appropriate waste containers for disposals of chemical and other waste materials.
Broken glass should be placed in the waste bucket.

Cleaning up

The lab bench should be wiped clean with a wet tissue.

Instructions for the Texas Instruments TL-83 plus calculator

The following instruction is sufficient for this Olympiad. This machine is a gift from Texas Instruments to mark this Olympiad. The calculator is able to perform many, many calculations, more than necessary for this examination. Other options can be found in the book, but do not use the book today.

On: Press on the button 'ON'.
Off: First press the button '2nd' and then press the button 'ON'.
Adding, subtracting, multiplying and dividing is as usual:
e.g. adding: Number $1+$ Number 2 'enter'

Brackets can easily be used (on the panel above 8 and 9 resp.).
The buttons for $\ln , \log , \mathrm{x}^{-1}$ and x^{2} are on the panel.
For e^{x} first press the button ' 2 nd, and then the button ' 1 n' ; press the number and 'enter'.
For 10^{x} first press the button ' 2 nd , and then the button 'log' ; press the number and 'enter'.
For V_{x} first press the button ' 2 nd, and then ' x^{2} '; press the number and 'enter'.
For the number $\mathrm{e}=2.71828$ first press the button ' 2 nd , and then press the button ' $-:-$ ' .
For the number $\pi=3.14$ first press the button ' 2 nd , and then press the button ' \wedge '.
In general: The yellow functions can be activated by first pressing ' 2 nd (yellow button) and then the desired function in yellow.

The screen can be cleared by pressing the 'clear' button.

Chemicals, glassware and equipment:

Microscale glassware kit

(a) Thermometer (on the bench)
(b) Chromatography column
(c) Thermometer adaptor
(d) Connector
(e) 2 Magnetic stirring bars
(f) Hirsch funnel
(g) One-way stopcock
(h) Distillation head 60 mm
(i) Filter flask 25 mL
(j) Connecting adaptor
(k) Sleeve stopper 8 mm septum
(l) Syringe polyethylene 1 mL
(m) Connector with support rod
(n) Centrifuge Tube 15 mL
(o) Distillation column
(p) Reaction tube $10 \times 100 \mathrm{~mm}$
(q) Erlenmeyer flask 10 mL
(r) Long neck flask 5 mL
(s) Short neck flask 5 mL
(t) Filter adapter
(u) Tubing PTFE $1 / 16$ "
(v) Spatula

Glassware and equipment

Sand bath (sand supplied separately) 1
Erlenmeyer (50 mL) 1
Burette (50 mL) 1
Burette clamp 1
Clamp holder with clamp 2
Support stand 2
Mortar and pestle 1
Beaker $100 \mathrm{~mL} \quad 1$
Measuring cylinder $10 \mathrm{~mL} \quad 1$
Volumetric flask $250 \mathrm{~mL} \quad 1$
Volumetric flask 100 mL 2
Glass funnel 1
Measuring pipette $10 \mathrm{~mL} \quad 2$
Pipetting balloon 1
Pasteur pipettes 10
Pasteur pipette bulbs 3
Weighing paper 20
Magnetic stirrer 1
Magnetic stirring bar 1
Pair of tweezers 1
Spoon 1
Screw cap bottle (large) for TLC 1
Thin layer plates $(5 \times 10 \mathrm{~cm}) \quad 4$
Capillary tubes for TLC (in sample tube) 5
Cuvets 1.000 cm 2
(in location Zernicke near the balances)
(in location Zernicke in sample tube)

Stirring rod	1
Sample tubes	4
Stopwatch	1
Sealing bag	2

Chemicals

Methyl N-acetyl-phenylalaninate (NAcPheOMe) 500 mg (exact weight $\pm 1 \mathrm{mg}$)
(S)-Phenylalanine (Phe) $\quad 500 \mathrm{mg}$ (exact weight $\pm 1 \mathrm{mg}$)

Sodium cyanate (NaOCN)
α-Chymotrypsin solution (0.05% in water)
300 mg
10 mL in a vial, available from the laboratory assistant
Iron pill in envelope
1 pill
Methanol (MeOH)
Hydrochloric acid (HCl) 4 M
Sodium hydroxide (NaOH) 0.1 M
Sodium hydroxide $(\mathrm{NaOH}) \quad 1 \mathrm{M}$
Propyl red solution (0.02% in ethanol)
Buffer solution $\mathrm{pH}=8$
Hydroxylamine. HCl solution $\left(\mathrm{H}_{2} \mathrm{NOH} . \mathrm{HCl}\right)$ 20 mL
50 mL
70 mL (exact titer is given in your examination paper)
3 mL in small vial
3 mL in small vial
150 mL
10 mL

$$
100 \mathrm{~g} \mathrm{~L}^{-1}
$$

1,10-Phenanthroline solution $1 \mathrm{~g} \mathrm{~L}^{-1}$
Di-isopropylether
Acetone (high purity)
20 mL

TLC eluent (2% formic acid in ethyl acetate)
pH-paper
50 mL
10 mL

Hi-flo filter aid
20 mL

Wash bottle with acetone (for cleaning)
Wash bottle with "demi" water
4 pieces
5 g
250 mL
500 mL

Available for general use

Cleaning paper
Sponge
Brush
Waste container
Parafilm

Equipment for general use

Hotplate (only in location Zernicke)
Ultrasonic bath
Vacuumpump
Spectrophotometer
Balance
UV lamp

R and S phrases

Acetone

Formula	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
Molecular weight	58.08
Melting point	$-95{ }^{\circ} \mathrm{C}$
Boiling point	$56^{\circ} \mathrm{C}$
Density	$0.79 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly flammable

S9 Keep container in a well-ventilated place
S16 Keep away from sources of ignition
S23 Do not breathe vapour
S33 Take precautionary measures against static discharges

Di-isopropyl ether

Formula	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$
Molecular weight	102.17
Melting point	$-85{ }^{\circ} \mathrm{C}$
Boiling point	$68{ }^{\circ} \mathrm{C}$
Density	$0.72 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly flammable

R19 May form explosive peroxides.
R66 Repeated exposure may cause skin dryness or cracking
R67 Vapours may cause drowsiness and dizziness
S9 Keep container in a well-ventilated place
S16 Keep away from sources of ignition - No smoking
S29 Do not empty into drains
S33 Take precautionary measures against static discharges

Ethanol

Formula	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
Molecular weight	46.08
Melting point	$-114{ }^{\circ} \mathrm{C}$
Boiling point	$78{ }^{\circ} \mathrm{C}$
Density	$0.78 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly Flammable

S7 Keep container tightly closed
S16 Keep away from sources of ignition

Ethyl acetate

Formula	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
Molecular weight	88.10
Melting point	$-84{ }^{\circ} \mathrm{C}$
Boiling point	$76{ }^{\circ} \mathrm{C}$
Density	$0.90 \mathrm{~g} / \mathrm{cm}^{3}$

R11 Highly flammable
R36 Irritating to the eyes

R66 Repeated exposure may cause skin dryness or cracking
R67 Vapours may cause drowsiness and dizziness
S16 Keep away from sources of ignition - No smoking
S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advise
S33 Take precautionary measures against static discharges

Hydrochloric acid

Formula	HCl
Molecular weight	36.46
Density	0.909

R11 Highly flammable
R37/37 Irritating to eyes, respiratory system and skin

38
S16 Keep away from sources of ignition - No smoking
S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advise
S45 In case of accident of if you feel unwell, seek medical advise immediately (show the label where possible)
S7 Keep container tightly closed

Hydroxylamine hydrochloride

Formula	$\mathrm{H}_{3} \mathrm{NO} . \mathrm{HCl}$
Molecular weight	69.49
Melting point	$155{ }^{\circ} \mathrm{C}$
Density	$1.67 \mathrm{~g} / \mathrm{cm}^{3}$

R22 Harmful if swallowed
R36/38 Irritating to eyes and skin
R43 May cause sensitisation by skin contact
R48/22 Harmful: danger of serious damage to health by prolonged exposure if swallowed
R50 Very toxic to aquatic organisms
S22 Do not inhale dust
S24 Avoid contact with skin

S37 Wear suitable gloves
S61 Avoid release to the environment.

Methanol

Formula	$\mathrm{CH}_{4} \mathrm{O}$
Molecular weight	32.04
Melting point	$-98{ }^{\circ} \mathrm{C}$
Boiling point	$65^{\circ} \mathrm{C}$
Density	

R11 Highly flammable

R23-25 Toxic by inhalation, in contact with skin and if swallowed R39/23Toxic: danger of very serious irreversible effects through
24/25 inhalation, in contact with skin and if swallowed
S7 Keep container tightly closed

S16 Keep away from sources of ignition -No smoking
S36/37 Wear suitable protective clothing and gloves
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)

1,10-Phenanthroline

Formula $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$
Molecular weight 180.20

Melting point
$117-120{ }^{\circ} \mathrm{C}$

R25 Toxic when swallowed

R50/53Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)
S60 This material and its container must be disposed of as hazardous waste
S61 Avoid release to the environment

L-Phenylalanine

Formula $\mathrm{C}_{9} \mathrm{H}_{1} \mathrm{NO}_{2}$
Molecular weight
Melting point 165.19
$270-275^{\circ} \mathrm{C}$

S24/25Avoid contact with skin and eyes

Sodium Cyanate

Formula	NaOCN
Molecular weight	65.00
Melting point	$550^{\circ} \mathrm{C}$

R22 Harmful if swallowed

R52/53Harmful to aquatic organisms, may cause long-term adverse effects
in the aquatic environment
S24/25Avoid contact with skin and eyes
S61 Avoid release to the environment

Sodium hydroxide

Formula	NaOH
Molecular weight	40.00
Melting point	$318^{\circ} \mathrm{C}$

R35 Causes severe burns
S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice

S37/39 Wear suitable gloves and eye/face protection
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)

Enzymatic Hydrolysis of Methyl \boldsymbol{N}-Acetyl-phenylalaninate

Introduction

α-Chymotrypsin, a protease enzyme recognizing derivatives of natural α-amino acids, catalyses the hydrolysis of esters. In this experiment the enzymatic hydrolysis of racemic methyl N-acetyl-phenylalaninate \mathbf{A} is investigated (Scheme).

The rate of formation of N -acetyl-phenylalanine \boldsymbol{B} can be monitored by titration with 0.100 M NaOH in the presence of propyl red as a pH indicator.

Propyl red (protonated form)
At $\mathrm{pH}<5$: pink; at $\mathrm{pH}>6$: yellow

Procedure

Note: the required amount of α-chymotrypsin will be supplied in a sample vial by the laboratory assistant on request.

Racemic methyl N-acetyl-phenylalaninate $A[500 \mathrm{mg}$, the exact weight ($\pm 1 \mathrm{mg}$) is indicated on the label of the vial marked as NacPheOMe] is transferred quantitatively into a 50 mL Erlenmeyer flask and dissolved in methanol ($\sim 2.5 \mathrm{~mL}$). Subsequently, propyl red (0.02% solution in ethanol; 4 drops) is added. The kinetic experiment is started by adding α-chymotrypsin (10.0 mL of a 0.05% solution in distilled water) in one portion (start the stopwatch).

When the reaction mixture turns pink, it is immediately titrated with 0.100 M NaOH until the colour changes to yellow. When the pink colour reappears, add just enough titrant to restore the pale yellow colour, swirling the flask continually during the addition. You only need to record the reading on the burette every 5 minutes. (Note: at the beginning colour changes occur very frequently.)

Monitor the reaction for 75 minutes. A graph showing the amounts of NaOH consumed in mL versus time is constructed, in order to visualize the kinetic course of this enzymatic reaction.

34th IChO Laboratory Task
Enzymatic Hydrolysis of Methyl N -Acetylphenylalaninate

Answer Sheet 1

Score 12 points

	1	2	3	4	5	6
Marks	$\mathbf{1 0}$	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$

1 Amount of the starting racemic methyl N-acetyl-phenylalaninate \mathbf{A}

$$
\mathrm{mg}=\quad \mathrm{mmol}
$$

2 Record the time in minutes and the total consumption of NaOH in mL (accuracy $\pm 0.05 \mathrm{~mL}$), according to the scheme below. Final recording after 75 minutes.

Time (\min)															75
NaOH (mL)															

3 Construct a graph of the total consumption of NaOH vs time on the supplied graph paper.
Put minutes on the x -axis: 5 min . per cm
Put mL NaOH on the y -axis: $\quad 1.0 \mathrm{~mL}$ per cm

4 Calculate the amount of 0.100 M NaOH consumed in this experiment in mmol Answer:

Calculation:

Enzymatic Hydrolysis... (Cont'd)
Answer Sheet 2
$5 \quad$ Calculate the degree of hydrolysis of methyl N-acetyl- (R, S)-phenylalaninate \mathbf{A} in $\mathrm{mol} \%$ Answer:

Calculation:

6 Which of the following statements is in accordance with your experimental results? Mark the appropriate box.
$\square \quad$ The enzyme catalyses the hydrolysis to give methyl N-acetyl-(S)-phenylalaninate and N -acetyl-(R)-phenylalanine.
\square The enzyme catalyses the hydrolysis to give N-acetyl- (R, S)-phenylalanine.
\square The enzyme catalyses the hydrolysis to give methyl N-acetyl- (R)-phenylalaninate and N -acetyl-(S)-phenylalanine
$\square \quad$ The enzyme loses its catalytic activity during the course of the reaction.

Synthesis of Benzylhydantoin

Introduction

α-Amino acids are the building blocks for peptides and proteins. They are also frequently used as starting material for the synthesis of pharmaceuticals. In this experiment natural S-phenylalanine \mathbf{A} is converted in two steps into benzylhydantoin \mathbf{C}, which is a useful intermediate for the preparation of various physiologically active derivatives.

STEP 1

A
Molecular Weight $=165.19$

B
Molecular Weight $=208.22$

STEP 2

C
Molecular Weight $=190.20$

Procedure

STEP 1

Retain a tiny amount of starting material A for the TLC analysis (see below). A longnecked round-bottomed flask is charged with (S)-phenylalanine $A(500 \mathrm{mg}, 3 \mathrm{mmol}$, the exact amount is indicated on the label of the vial), sodium cyanate ($300 \mathrm{mg}, 4.6$ mmol), water (3 mL) and a stirring bar. Two drops of aqueous sodium hydroxide (1 M) are added to the stirred suspension. The flask is equipped with a condenser (distillation column) and the reaction mixture is heated to $80^{\circ} \mathrm{C}$ on a sand bath while stirring magnetically.

Important

In order to reach the appropriate temperature in time and not lose too much time, start the electric heating of the sand bath immediately at the beginning of this experiment. Check the temperature of the sand bath regularly and carefully with a thermometer.

After heating the reaction mixture at $80^{\circ} \mathrm{C}$ for at least 30 minutes, the resulting clear solution is cooled to room temperature and poured into a small Erlenmeyer flask. Rinse the round-bottomed flask with a little water. The solution is acidified by dropwise addition of hydrochloric acid (4 M) to $\mathrm{pH}<3$ with magnetic stirring. Some water is added to the resulting white suspension in order to facilitate stirring.

The white precipitate is then filtered off by suction, washed with ample water (on the filter) and then washed twice with a small amount of di-isopropyl ether to remove most of the adhering water. The urea derivative B is left on the filter under suction for at least 3 minutes to remove as much solvent as possible.

A small amount of the obtained urea derivative \mathbf{B} is retained for TLC-analysis later.

STEP 2

The urea derivative \mathbf{B} is now transferred into a long-necked round-bottomed flask and hydrochloric acid ($4 \mathrm{M}, 3 \mathrm{~mL}$) is added. A stirring bar is introduced and the suspension is stirred thoroughly whilst heating at $80^{\circ} \mathrm{C}$ on a sand bath. A clear solution is obtained. After a reaction time of 30 minutes, the reaction mixture, which may already contain some precipitate, is cooled to room temperature. The obtained suspension is filtered by suction, washed thoroughly with water and finally washed twice
with a small amount of di-isopropyl ether. The product is left on the filter under suction for at least 3 minutes. It is then collected on a filter paper and dried in the air for at least 30 minutes.

The final product \mathbf{C}, its precursor \mathbf{B} and starting material \mathbf{A} (see above) are subjected to TLC-analysis. For this purpose small amounts of either compound are dissolved in a tiny amount of pure acetone. Small samples of these solutions are applied to a TLC plate, using the supplied capillary tubes. The analysis is carried out with two TLC plates in one run. The TLC-plates are developed with a solution of 2% formic acid in ethyl acetate as the eluent. After the elution the TLC-plates are analysed using a UV-lamp. The starting line, solvent front and the UV-active spots are clearly marked with a pencil. Copy the diagram in the box on the answer sheet. The R_{f} values are determined. Finally, the TLC-plate with the best analysis is wrapped in parafilm and placed in a plastic bag with a sealing strip.

The final product \mathbf{C} is transferred into a sample vial of which the empty weight has been predetermined (weight is indicated on the label). Weigh the vial with product and calculate the yield of the product \mathbf{C}.

The examination committee will check the quality of the benzylhydantoin that you have prepared by determining its melting point using an automatic melting point apparatus.

34 ${ }^{\text {th }}$ IChO Laboratory Task

Synthesis of Benzylhydantoin

Weight of your starting material \mathbf{A} (see label on the vial):
mg

Weight of the empty sample vial:
mg
(see label on the vial: YOUR PRODUCT)

1 Weight of the sample vial containing your product \mathbf{C} : mg

2 Amount of benzylhydantoin \mathbf{C} obtained: mg

Calculate the yield of benzylhydantoin \mathbf{C} :
Answer: \%

Calculation:
$3 \quad R_{\mathrm{f}}$ value of urea derivative \mathbf{B}
Answer:
Calculation:
$4 \quad R_{\mathrm{f}}$ value of benzylhydantoin \mathbf{C}
Answer:
Calculation:

Synthesis of Benzylhydantoin (Cont'd)

6 Conclusions from the TLC analysis:
Compound B:
\square is pure
\square contains some \mathbf{A}
\square contains several contaminants
Compound \mathbf{C} :
\square is pure
\square contains some \mathbf{B}
\square contains some \mathbf{A} and \mathbf{B}
\square contains several contaminants
$7 \quad$ Appearance of benzylhydantoin \mathbf{C}, mark what is appropriate for your product.
\square White colour
\square Yellowish colour
\square Sticky
Crystalline

- Powder
$\mathbf{8}$ Melting point of benzylhydantoin \mathbf{C} will be determined later by the examination committee ${ }^{\circ} \mathrm{C}$

Place your packed TLC plate (see procedure) in an envelope with your name and student number.

Determination of Iron in Iron Pills

Introduction

Iron is an essential component of hemoglobin, transporting oxygen in the blood to all parts of the body. It also plays a vital role in many metabolic reactions. Iron deficiency can cause anaemia resulting from low levels of hemoglobin in the blood. Iron deficiency is the most widespread mineral nutritional deficiency worldwide. One way to reduce iron shortage is by treatment with iron pills.
The active ingredient in the iron pill to be examined, is iron(II) present as iron(II) fumarate. Besides this organic iron(II) compound the pill contains other compounds such as binding agents. The structure of fumaric acid is:

Fumaric acid
Iron(II) and 1,10-phenanthroline form an orange/red coloured complex $\left[\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3} \mathrm{Fe}\right]^{2+}$. The absorbance of this complex, determined at 510 nm in a buffer solution $(\mathrm{pH}=8)$ is a measure for the iron content of the iron pill. Since 1,10-phenanthroline only binds to iron(II) and iron(II) is readily oxidized to iron(III), hydroxylammonium chloride is added to reduce all iron(III) to iron(II). A simplified reaction scheme is:

$$
2 \mathrm{NH}_{2} \mathrm{OH}+4 \mathrm{Fe}^{3+} \rightarrow \mathrm{N}_{2} \mathrm{O}+4 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{Fe}^{2+}
$$

1,10-Phenanthroline

Procedure

The weight of the iron pill is determined
with an accuracy of 1 mg using a balance. The pill is carefully pulverized in a mortar and transferred quantitatively into a 100 mL beaker with the aid of a small amount of distilled water. Hydrochloric acid ($5 \mathrm{~mL}, 4 \mathrm{M}$) is added. The content of the beaker is heated up to approximately $60{ }^{\circ} \mathrm{C}$ on a hotplate. The solution turns a yellow colour.

The beaker is then placed in an ultrasonic bath for at least 5 minutes. The beaker is kept in place by styrofoam. The suspension is filtered by suction using a Hirsch funnel containing a small layer of moistened hi-flow filter aid pressed onto the filter. The hi-flow filter aid is washed with ample distilled water. The filtrate is carefully transferred into a volumetric flask (250 mL) and the final volume adjusted by adding distilled water and with regular mixing. An amount of 10 mL is pipetted from this solution and transferred into a volumetric flask of 100 mL . Again the volume is adjusted with distilled water while mixing the content of the flask.
From this solution, 10 mL is pipetted and transferred into a volumetric flask of 100 mL . Subsequently, 1,10 -phenanthroline solution (10 mL) and hydroxylammonium chloride solution (1 mL) are added. Then the volume is adjusted with buffer solution (pH 8).

The absorbance of this solution is measured with a spectrophotometer at 510 nm against water as a blank in a 1.000 cm cuvet.
Calculate the amount of iron in the iron pill on basis of the known molar absorptivity (extinction coefficient, ε) of the iron(II)phenanthroline complex at 510 nm . The molar absorptivity of the iron(II)phenanthroline complex at 510 nm is $11100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

Important

In order to eliminate deviations in absorbance typically connected to the spectrophotometer used, a correction factor is denoted on the spectrophotometer you will be using for your experiment. The absorbance observed must be multiplied by this factor in order to obtain the correct absorbance of the solution of the iron complex.
Name: Student Code:

34 ${ }^{\text {th }} \mathbf{I C h O}$ Laboratory Task

Determination of Iron in Iron Pills

Answer Sheet 5
Score 10 points

	1	2	3	4	5
Marks	$\mathbf{1 5}$	$\mathbf{4 0}$	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{1 5}$

1 Weight of the iron pill mg
Number of the spectrophotometer

Correction factor

2 Reading of the spectrophotometer: \quad; corrected absorbance: \quad AU

3 Concentration of iron(II)phenanthroline complex in the cuvet: $\mathrm{mmol} \mathrm{L}^{-1}$
Calculation:

4 Total amount of iron(II) in the pill:
mg
Calculation:

5 Calculate the iron content of the pill in weight\%
Answer:
Calculation:
Periodic Table of Elements

Scientific Committee of the $34^{\text {th }}$ International Chemistry Olympiad

Chairperson:

Prof.dr. B. Zwanenburg
University of Nijmegen

Section Theory:

Prof.dr.ir. H. van Bekkum
Prof.dr. H.P.J. Bloemers
Prof.dr. F.B. van Duijneveldt
Prof.dr. J.B.F.N. Engberts
Dr. G.A. van der Marel
Prof.dr. E.W. Meijer
Prof.dr. A. Meijerink
Prof.dr. A. Oskam
Prof.dr. J. Schoonman
Prof.dr. A.J. Schouten
Ms. Prof.dr. N.H. Velthorst
Prof.ir. J.A. Wesselingh
Delft University of Technology
University of Nijmegen
University of Utrecht
University of Groningen
University of Leiden
Eindhoven University of Technology
University of Utrecht
University of Amsterdam
Delft University of Technology
University of Groningen
Free University, Amsterdam
University of Groningen

Section Practical:

Prof.dr. J.F.J. Engbersen
Dr. E. Joling
Dr. A.J.H. Klunder
Dr. A.J. Minnaard
Dr. J.A.J.M. Vekemans
Mr.Ing. T. van Weerd
Dr. W.H. de Wolf

Consultants:

Drs. P. de Groot
Drs. A.M Witte
Drs. W. Davids

Secretariat:

Twente University of Technology
University of Amsterdam
University of Nijmegen
University of Groningen
Eindhoven University of Technology
University of Nijmegen
Free University, Amsterdam

Dr. R. Ruinaard
J. Brinkhorst

Ms. M.V. Versteeg

EXPERIMENTAL EXAMINATION - IChO34

Grading Protocol Enzymatic Hydrolysis of Methyl N-Acetylphenylalaninate

General:

In this experiment the student titrates the enzyme solution around its equivalence point. If the experiment is performed correctly, only enzymatic hydrolysis of the S-isomer occurs. In that case 11.3 mL of 0.1 M NaOH will be needed. Too basic conditions lead to additional chemical hydrolysis, too acidic conditions lead to a slower enzymatic hydrolysis. The evaluation of the answers on items 2 and 3 are interconnected.

Item 1: $500 \mathrm{mg}=2.26 \mathrm{mmol} \quad 2.24-2.26 \mathrm{mmol}=\mathbf{1 0}$ points
Item 2: (a) The regularity of the titration data is considered.
$13-15$ data points with correct intervals $(5 \pm 0.5 \mathrm{~min})=\mathbf{1 0}$ points.
$10-12$ data points $(5 \pm 0.5 \mathrm{~min})=\mathbf{5}$ points.
(b) The amount of NaOH consumed after 5 minutes is a good indication whether the enzyme reaction has started correctly. About 4.0 mL of NaOH is needed (tolerance $3.8-5.0 \mathrm{~mL}$):
5 points
The enzyme reaction proceeds during the first 20 minutes in an almost linear fashion.
Measurements after 10, 15 and 20 minutes are considered.
$10 \mathrm{~min}: 6.25-7.75 \mathrm{~mL}$
$15 \mathrm{~min}: 8.00-9.50 \mathrm{~mL}$
$20 \mathrm{~min}: 9.25-10.50 \mathrm{~mL} \quad 2$ out of 3 in the correct range $=\mathbf{5}$ points
In the time range 40-70 minutes the reaction approaches completion. Volume of additional $\mathrm{NaOH}: 0.1-0.5 \mathrm{~mL}=\mathbf{5}$ points

Final total volume of NaOH at 75 min between $11.0-12.2 \mathrm{~mL}=\mathbf{5}$ points
Item 3: Correct X and Y axes with units and data points $=\mathbf{1 0}$ points
Correct drawing of curve (with interpolation) $=\mathbf{5}$ points
Curve between margins ((see figure) $=\mathbf{1 0}$ points
Correct shape of curve $=\mathbf{5}$ points
Item 4: Amount of NaOH needed in $\mathrm{mmol}=$ volume NaOH after $75 \mathrm{~min} \times 0.1 \mathrm{~mol} \mathrm{~L}^{-1}=$ 10 points

Item 5: Degree of hydrolysis $=(\exp . \mathrm{mmol} \mathrm{NaOH} /$ calc. mmol A$) \times 100 \%=\mathbf{1 0}$ points
Item 6: Third option is correct if experiment is performed correctly $=\mathbf{1 0}$ points
The answer must agree with the experimental observations.
Grading Protocol Synthesis of Benzylhydantoin
Item 1: Weight of the sample vial containing product max 10 points
Weight influenced by

- balance dependency $\pm 5 \mathrm{mg}$
- evaporation of solvent +5 mg

Student weight: error $\leq+10 \mathrm{mg}$ and $\leq-5 \mathrm{mg}=\mathbf{1 0}$ points

Student weight: error $>+10 \mathrm{mg} \leq+15 \mathrm{mg}$ and $>-5 \mathrm{mg} \leq-10 \mathrm{mg}=5$ points Student weight: error $>+15 \mathrm{mg}$ and $>-10 \mathrm{mg}=\mathbf{0}$ points

Item 2: Amount of benzylhydantoin max 20 points
Yields are only accepted as real when m.p. in range $160-190{ }^{\circ} \mathrm{C}$
Average yield by experts: 72-75 \%, points allocated via histogram
Student yield in range $65-80 \%=\mathbf{2 0}$ points
Student yield in range $81-90 \%$ (slightly wet) $=\mathbf{1 5}$ points
Student yield in range $>90 \%$ (considerably wet) $=\mathbf{1 0}$ points
Student yield in range $60-64 \%=\mathbf{1 5}$ points
Student yield in range $50-59 \%=\mathbf{1 0}$ points
Student yield in range $25-49 \%=\mathbf{5}$ points
Student yield in range $<25 \%=\mathbf{0}$ points
If calculation of yield incorrect $\mathbf{- 5}$ penalty points
Item 3: R_{f} value of urea derivative \mathbf{B} max 10 points
Average value by experts $0.50-0.55$; Histogram made
Students R_{f}-value in range $0.50-0.55=\mathbf{1 0}$ points
Students R_{f}-value in range $0.45-0.49=\mathbf{5}$ points
Students R_{f}-value in range $<0.45=\mathbf{0}$ points
Students R_{f}-value in range $0.56-0.60=\mathbf{5}$ points
Students R_{f}-value in range $>0.60=\mathbf{0}$ points
Item 4: Rf -value of benzylhydantoin \mathbf{C} max 10 points
Average value by experts $0.70-0.75$; Histogram made
Students R_{f}-value in range $0.70-0.75=\mathbf{1 0}$ points
Students R_{f}-value in range $0.65-0.69=\mathbf{5}$ points
Students R_{f}-value in range $<0.65=\mathbf{0}$ points
Students R_{f}-value in range $0.76-0.80=\mathbf{5}$ points
Students R_{f}-value in range $>0.80=\mathbf{0}$ points
Item 5: TLC-analysis max 20 points
The following criteria have been applied

- position of front line $>5 \mathrm{~cm}=\mathbf{5}$ points
- quality and marking of spots* $=5$ points
- pure product \mathbf{B} (single spot) $=\mathbf{5}$ points
- pure product $\mathbf{C}($ single spot $)=\mathbf{5}$ points
* When (S)-phenylalanine A is not marked $\mathbf{- 5}$ penalty points

Item 6: Conclusions for the TLC analysis max 10 points
Compound B if correct $=\mathbf{5}$ points
Compound C if correct $=\mathbf{5}$ points
Item 7: Appearance of benzylhydantoin \mathbf{C} max 10 points
Colour if correct = $\mathbf{5}$ points
Texture if correct $=\mathbf{5}$ points
Item 8: Melting points of benzylhydantoin C max 10 points

Literature value $184^{\circ} \mathrm{C}$; Histogram made
Average value obtained by experts $178-180^{\circ} \mathrm{C}$
Students m.p. in range $176-190^{\circ} \mathrm{C}=10$ points
Students m.p. in range $172-175^{\circ} \mathrm{C}=5$ points
Students m.p. in range $<172^{\circ} \mathrm{C}=0$ points
Students m.p. in range $>190^{\circ} \mathrm{C}=0$ points

Grading Protocol Determination of Iron in Iron Pills

Item 1: max 15 points
Dimension error $=\mathbf{- 1 0}$ penalty points
Weight of pill no in range $315-332=\mathbf{- 5}$ penalty points
Item 2: max 40 points
Only 1 value (observed or corrected) = $\mathbf{- 1 0}$ penalty points
Value in range $0.475-0.575=\mathbf{4 0}$ points
Value in range $0.376-0.475=\mathbf{2 0}$ points
Value in range $<0.375=\mathbf{0}$ points
Value in range $0.575-0.659=\mathbf{2 0}$ points
Value in range $>0.659=\mathbf{0}$ points
Item 3: max 20 points
Lambert-Beer formula $=\mathbf{1 0}$ points
Correct calculation $=\mathbf{1 0}$ points
Dimension error $=\mathbf{- 1 0}$ penalty points
Item 4: max 10 points
Factor 10 wrong in calculation $=-5$ penalty points
Factor 4 wrong in calculation $=-5$ penalty points
Factor 2.5 wrong in calculation $=-5$ penalty points
No molecular mass in calculation $=-5$ penalty points
Item 5: max 15 points
Correct calculation $=\mathbf{5}$ points Iron-value $15-25 \%=\mathbf{1 0}$ points
Iron value $10-15 \%=\mathbf{5}$ points
Iron value $<10 \%=\mathbf{0}$ points
Iron value $25-30 \%=\mathbf{5}$ points
Iron value $>30 \%=\mathbf{0}$ points

