

General Instruction

- Only write with pen. Your calculator should be non-programmable.
- This theoretical exam booklet contains 63 pages, not including general instructions.
- This examination has 9 problems.
- You will have 5 hours to solve the exam.
- Begin only when the START command is given.
- All results must be written in the appropriate boxes in pen in the designated areas on the answer sheets. Use the back of the exam sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a 30-minute warning before the Stop command.
- You must stop working when the STOP command is given. Failure to stop writing will lead to the nullification of your exam.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise hand and wait until an invigilator arrives.

GOOD LUCK!

Theory IChO 2020

Problems \& Grading Information

Problem No	Title	Total Score	\% of Total Score
$\mathbf{1}$	Two Beauties of Turkey: the Van Cat and the Ankara Cat	24	$\mathbf{8}$
$\mathbf{2}$	A Tale of a Reactive Intermediate	77	10
$\mathbf{3}$	(\pm)-Coerulescine	51	8
$\mathbf{4}$	Symmetry Does Matter!	66	10
$\mathbf{5}$	Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision	100	14
$\mathbf{6}$	Thermodynamics through an Interstellar Journey	80	12
$\mathbf{7}$	Phthalocyanines	85	12
$\mathbf{8}$	Boron Compounds and Hydrogen Storage	58	14
$\mathbf{9}$	Quantification of Heavy Metal Ions	100	12
	TOTAL	$\mathbf{6 4 1}$	100

Authors

ALANYALIOĞLU, Murat, Atatürk University
AYDOĞAN, Abdullah, İstanbul Technical University
BURAT, Ayfer Kalkan, İstanbul Technical University
DAĞ, Ömer, Bilkent University
DAŞTAN, Arif, Atatürk University
KILIÇ, Hamdullah, Atatürk University
METİN, Önder, Koç University
SARAÇOĞLU, Nurullah, Atatürk University
TÜRKMEN, Yunus Emre, Bilkent University
ÜNLÜ, Caner, İstanbul Technical University
YILMAZ, İsmail, İstanbul Technical University
YURTSEVER, Mine, İstanbul Technical University

Editor

SARAÇOĞLU, Nurullah, Atatürk University

Physical Constants and Equations

Avogadro's number	$N_{A}=6.0221 \times 10^{23} \mathrm{~mol}^{-1}$
Boltzmann constant	$k_{B}=1.3807 \times 10^{-23} \mathrm{JK}^{-1}$
Universal gas constant	$R=8.3145 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.08205 \mathrm{~atm} \mathrm{LK}^{-1} \mathrm{~mol}^{-1}$
Speed of light	$c=2.9979 \times 10^{8} \mathrm{~ms}^{-1}$
Planck's constant	$h=6.6261 \times 10^{-34} \mathrm{Js}$
Faraday's constant	$F=9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Mass of electron	$m_{e}=9.1093 \times 10^{-31} \mathrm{~kg}$
Standard pressure	$P=1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Atmospheric pressure	$P_{a t m}=1.01325 \times 10^{5} \mathrm{~Pa}=760 \mathrm{mmHg}=760 \mathrm{torr}$
Zero of the Celsius scale	273.15 K
1 picometer (pm)	$10^{-12} \mathrm{~m} ; 1 \AA=10^{-10} \mathrm{~m}$
1 nanometer (nm)	$10^{-9} \mathrm{~m}$
	$1 \mathrm{eV}=1.6021 \times 10^{-19} \mathrm{~J}$
	$1 \mathrm{cal}=4.184 \mathrm{~J}$
	$1 \mathrm{amu}=1.6605 \times 10^{-27} \mathrm{~kg}$
Charge of an electron	$1.6021 \times 10^{-19} \mathrm{C}$
Ideal gas equation	$P V=n R T$

Physical Constants and Equations

Enthalpy	$H=U+P V$
Gibbs free energy	$G=H-T S$
	$\Delta_{r} G=\Delta G^{0}+R T \ln Q$
	$\Delta_{r} G^{0}=-R T \ln K=-n F E_{\text {cell }}^{0}$
Entropy change	$\Delta S=\frac{q_{r e v}}{T}$, where $\mathrm{q}_{\text {rev }}$ is heat for the reversible process
Entropy change	$\Delta S=n R \ln \frac{v_{2}}{v_{1}}$ (for isothermal expansion of an ideal gas)
Nernst equation	$E=E^{0}+\frac{R T}{n F} \ln \frac{C_{\text {oxidation }}}{C_{\text {reduction }}}$
Energy of a photon	$E=\frac{h c}{\lambda}$
Integrated rate law	
Zeroth-order	$[A]=[A]_{0}-k t$
First-order	$\ln [A]=\ln [A]_{0}-k t$
Second order	$\frac{1}{[A]}=\frac{1}{[A]_{0}}+k t$
Arrhenius equation	$k=A e^{-E_{a} / R T}$
Equation of linear calibration curve	$y=m x+n$
Lambert-Beer equation	$A=\varepsilon l c$

Periodic Table of Elements

1
18

$\underset{1.008}{\underset{1}{H}}$	2			$\begin{aligned} & \text { emic numb } \\ & \text { simmbc } \\ & \text { omic weic } \end{aligned}$								13	14	15	16	17		2 He 4.003
$\begin{array}{\|c} \hline \stackrel{3}{\mathrm{Li}} \\ 6.94 \end{array}$	$\begin{array}{\|c} \hline{ }^{4} \\ \mathrm{Be} \\ 9.01 \end{array}$											$\underset{10.81}{\mathrm{~B}^{5}}$	$\stackrel{6}{\mathrm{C}_{12.01}^{\mathrm{C}}}$	$\underset{14.01}{\sim}$	$\underset{16.00}{8}$	$\underset{19.00}{\underset{\sim}{9}}$		${ }^{\text {10 }} \mathrm{Ne}$
Na	$\begin{array}{\|c\|} \hline 12 \\ \mathrm{Mg} \end{array}$	3	4	5	6	7	8	9	10	11	12	$\begin{aligned} & 13 \\ & \mathrm{Al}^{1} \end{aligned}$	$\begin{array}{\|c} 14 \\ \mathrm{Si} \\ \hline 280 \end{array}$	$\begin{array}{\|c} \hline 15 \\ P \\ \hline 00.97 \end{array}$	$\underset{32.06}{\mathrm{~S}_{16}^{16}}$	17		18 Ar 39.95
$\begin{gathered} \hline 19 \\ K \\ \text { 3910 } \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ \mathrm{SC} \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti}_{47.87} \end{gathered}$	$\begin{gathered} 23 \\ V \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \mathrm{C}, ~ \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{Mn} \\ 54,94 \end{gathered}$	$\begin{array}{\|l\|} \hline 26 \\ \mathrm{Fe} \\ 55.85 \\ \hline \end{array}$			$\begin{gathered} 29 \\ \mathrm{Cu} \\ 635 \end{gathered}$	$\begin{aligned} & 30 \\ & Z_{65} n_{88} \end{aligned}$	$\begin{gathered} 31 \\ \mathrm{Ga} \end{gathered}$	$\begin{aligned} & 32 \\ & \mathrm{Ge} \\ & \hline 2 \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \\ & \hline 7897 \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$		36 Kr 33.80
$\begin{aligned} & 37 \\ & R \mathrm{Rb} \\ & \hline \end{aligned}$	$\begin{gathered} 38 \\ \hline 87 \\ \hline 87 \end{gathered}$	$\begin{gathered} \hline 39 \\ Y \\ 88.91 \end{gathered}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \\ & 91.22 \end{aligned}$	$\begin{aligned} & 44 \\ & \hline{ }_{929} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 42 \\ \mathrm{Mo} \\ 95.95 \\ \hline \end{gathered}$	$\begin{aligned} & \hline{ }^{43} \\ & \mathrm{Tc} \end{aligned}$	$\begin{array}{\|l\|} \hline{ }^{44} \\ \text { un } \end{array}$ 101.1	$\begin{aligned} & 45 \\ & \hline \text { Rh } \\ & 1029 \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd}_{106} \\ & \hline 10 \end{aligned}$	$\begin{array}{\|c\|} \hline 47 \\ \mathrm{Ag} \\ \hline 107 \end{array}$	$\begin{gathered} 48 \\ \mathrm{Cd} \end{gathered}$	$\begin{aligned} & 49 \\ & \text { In } \\ & 114.8 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { Sn } \\ & 119 \end{aligned}$	$\begin{aligned} & 51 \\ & \text { Sb } \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \\ & { }_{127.6} \end{aligned}$	$\begin{gathered} 53 \\ 1 \\ 126.9 \end{gathered}$		54 ¢ 131.3
$\begin{gathered} 55 \\ \mathrm{C}_{132.9} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 56 \\ \text { Ba } \\ 137.3 \end{array}$	57-71	$\underset{\substack{727 \\{ }_{178.5} \\ \hline}}{ }$	Ta 180.9	$\begin{gathered} \hline 74 \\ W_{183.8}^{W} \end{gathered}$	$\begin{aligned} & \hline 75 \\ & \mathrm{Re} \\ & 186.2 \end{aligned}$	$\begin{array}{\|c} \hline 76 \\ \text { Os } \\ \text { 190.2 } \end{array}$	$\begin{array}{\|c\|} \hline 77 \\ \hline 1 r \\ 192.2 \\ \hline \end{array}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { 195.1 } \end{gathered}$	$\begin{gathered} 79 \\ \text { A } \\ \text { 197.0 } \end{gathered}$	$\begin{gathered} 80 \\ \hline 200.6 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 81 \\ & \mathrm{Tl} \end{aligned}$ 2044	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \end{aligned}$		$\begin{array}{\|l\|} \hline 84 \\ \text { Po } \end{array}$	$\begin{aligned} & 85 \\ & \mathrm{At} \end{aligned}$		${ }^{86} \mathrm{R}$
$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$	$\begin{array}{\|l\|} \hline 88 \\ \text { Ra } \end{array}$	89-103	$\begin{aligned} & 104 \\ & R f \end{aligned}$	$\begin{array}{\|l\|} \hline 105 \\ \mathrm{Db} \end{array}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \end{aligned}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \end{aligned}$	$\begin{array}{\|l} \hline 108 \\ \mathrm{Hs} \end{array}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	110	Rg^{111}	$\begin{aligned} & 112 \\ & \mathrm{Cn} \end{aligned}$	$\begin{aligned} & 113 \\ & \mathrm{Nh} \end{aligned}$	${ }^{114}$	$\begin{aligned} & \hline 115 \\ & \mathrm{Mc} \end{aligned}$	Li6	Ts		118 Og

57	58	59	${ }^{50}$	61	62	63	64	65	66	${ }^{67}$	68	69	${ }^{60}$	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

International Year
of the Periodic Table
of Chemical Eloments

Copyright © 2018 International Union of Pure and Applied Chemistry

${ }^{1}$ H-NMR Chemical Shifts

Typical Coupling Constants

	${ }^{3} \mathrm{~J}=7-12 \mathrm{~Hz}$	
		$\begin{aligned} & 3 \mathrm{~J}=6-9 \mathrm{~Hz} \text { (ortho) } \\ & 4 \mathrm{~J}=1-3 \mathrm{~Hz} \text { (meta) } \\ & 5 \mathrm{~J}=0-1 \mathrm{~Hz} \text { (para) } \end{aligned}$

Theory IChO 2020

${ }^{13}$ C-NMR Chemical Shifts

IR Absorption Frequency Table

Functional Group	Type of Vibration	Absorption Frequency Region (cm^{-1})	Intensity
Alcohol			
O-H	(stretch, H-bonded)	3600-3200	strong, broad
	(stretch, free)	3700-3500	strong, sharp
C-O	(stretch)	1150-1050	strong
Alkane			
C-H	stretch	3000-2850	strong
	bending	1480-1350	variable
Alkene			
$=\mathrm{C}-\mathrm{H}$	stretch	3100-3010	medium
	bending	1000-675	strong
$\mathrm{C}=\mathrm{C}$	stretch	1680-1620	variable
Alkyl Halide			
C-F	stretch	1400-1000	strong
$\mathrm{C}-\mathrm{Cl}$	stretch	800-600	strong
$\mathrm{C}-\mathrm{Br}$	stretch	600-500	strong
C-I	stretch	500	strong
Alkyne			
C-H	stretch	3300	strong, sharp
$\mathrm{C} \equiv \mathrm{C}$	stretch	2260-2100	variable, not present in symmetrical alkynes

IR Absorption Frequency Table

Amine			
$\mathrm{N}-\mathrm{H}$	stretch	3500-3300	medium (primary amines have two bands; secondary amines have one band, often very weak)
C-N	stretch	1360-1080	medium-weak
N-H	bending	1600	medium
Aromatic			
C-H	stretch	3100-3000	medium
$\mathrm{C}=\mathrm{C}$	stretch	1600-1400	medium-weak, multiple bands
Carbonyl			
$\mathrm{C}=\mathrm{O}$	stretch	1820-1670	strong
Acid			
$\mathrm{C}=0$	stretch	1725-1700	strong
$\mathrm{O}-\mathrm{H}$	stretch	3300-2500	strong, very broad
C-O	stretch	1320-1210	strong
Aldehyde			
$\mathrm{C}=\mathrm{O}$	stretch	1740-1720	strong
C-H	stretch	2850-2820 \& 2750-2720	medium, two peaks
Amide			
$\mathrm{C}=0$	stretch	1690-1640	strong
$\mathrm{N}-\mathrm{H}$	stretch	3500-3100	unsubstituted have two bands
	bending	1640-1550	

IR Absorption Frequency Table

Anhydride			
$\mathrm{C}=0$	stretch	1830-1800 \& 1775-1740	two bands
Ester			
$\mathrm{C}=0$	stretch	1750-1735	strong
C-O	stretch	1300-1000	two bands or more
Ketone			
acyclic	stretch	1725-1705	strong
cyclic	stretch	3-membered-1850	strong
	stretch	4-membered - 1780	strong
	stretch	5-membered - 1745	strong
	stretch	6-membered - 1715	strong
	stretch	7-membered - 1705	strong
α, β-unsaturated	stretch	1685-1665	strong
conjugation moves absorptions to lower wavenumbers			
aryl ketone	stretch	1700-1680	strong
Ether			
C-O	stretch	1300-1000 (1150-1070)	strong
Nitrile			
$\mathrm{C} \equiv \mathrm{N}$	stretch	2260-2210	medium
Nitro			
N-O	stretch	1560-1515 \& 1385-1345	strong, two bands

Two Beauties of Turkey: the Van Cat and the Ankara Cat

The most beautiful of cats, the Van cat is a pure breed living only in Lake Van basin. Another endemic cat breed is the Ankara cat. They are called Angora cats. Their most important feature is their two different eye colors.

Just like people, cats can sometimes be stressed and angry. Just as people are made happy by melatonin, the stress of cats can be reduced and they can be made happy thanks to a natural product. Nepetalactone is an organic compound isolated from the plant catnip (Nepeta cataria), which acts as a cat attractant. Nepetalactone is a ten-carbon bicyclic monoterpenoid compound derived from isoprene with two fused rings: a cyclopentane and a lactone.

Total synthesis of nepetalactone:

1) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$
2) NaIO_{4}

1.1 The above scheme describes the total synthesis of nepetalactone. 14.0pt Draw structures of A-G, without stereochemical details.

Hints:

- Compound A has strong and sharp band at $3300 \mathrm{~cm}^{-1}$ in the IR spectrum.
- A, B, and F are monocyclic, while C, D, E, and G are bicyclic compounds.
- F has one doublet at $\sim 9.8 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

Reactions of nepetalactone:

1) $180^{\circ} \mathrm{C}$
2) O_{2}

I

1) $\mathrm{H}_{2} / \mathrm{Pt}$
2) $\mathrm{HCl}(\mathrm{aq})$
3) $\mathrm{H}_{2} / \mathrm{Pt}$
J
$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$

The above scheme includes a few reactions of one of the enantiopure nepetalactone $\mathbf{1}$ isomers. Three of the reaction products ($\mathbf{5}, \mathbf{6}$, and \mathbf{J}) are used as insect repellents in industry.

> 1.2 For the relationship between $\mathbf{5}$ and $\mathbf{6}$, which of the following is/are true? Tick the box next to the correct answer(s) on your answer sheets.

Reaction of $\mathbf{1}$ with DDQ gives highly conjugated compound \mathbf{H}. Also, thermal reaction of coumpound \mathbf{H} with p-quinone gives I with molar mass of $226.28 \mathrm{~g} / \mathrm{mol}$.
1.3 Draw the structures of \mathbf{H}, \mathbf{I}, and \mathbf{J} indicating stereochemistry.
6.0pt

Hints:

- During the formation of I, sequential pericyclic reactions and an oxidation reaction (due to the presence of O_{2}) take place, and a well-known gas forms during the reaction.
- J has a strong and very broad band between 3300 and $2500 \mathrm{~cm}^{-1}$ in the IR spectrum.

A Tale of a Reactive Intermediate

Arynes constitute a special class of reactive intermediates. The first experimental evidence for the structure of an aryne (benzyne) was demonstrated in 1953 via the elegant labeling experiments by John D. Roberts and coworkers.

In one such experiment, chlorobenzene, whose carbon at position 1 was labeled with radioactive ${ }^{14} \mathrm{C}$, was reacted with KNH_{2} in liquid NH_{3} to give nearly equal amounts of isotopic isomers \mathbf{A} and \mathbf{B} along with the inorganic salt \mathbf{C}. This reaction proceeds via the formation of aryne intermediate \mathbf{D}.

2.1 Draw the structures of \mathbf{A}, \mathbf{B} and \mathbf{D}, and provide the formula of \mathbf{C}. Indicate the 7.0 pt position(s) of ${ }^{14}$ C-labeled carbon(s) with an asterisk (*) whenever applicable.

Analysis of the ${ }^{14} \mathrm{C}$-labeled product(s) was achieved via degradation experiments (the ${ }^{14} \mathrm{C}$-labeled carbons are not shown on the structures). Radioactivities of the intermediates and final products were examined.

Theory IChO 2020

2.2 Tick the appropriate boxes on the answer sheet for the intermediates and prod- 9.0pt ucts that you expect to exhibit radioactivity.

With the aim of facilitating aryne formation, Kobayashi and co-workers developed a fluoride -induced aryne generation protocol. Using this method, benzene derivative 3 is reacted with furan (4) in the presence of CsF, resulting in the formation of \mathbf{E}, \mathbf{F}, and \mathbf{G}.

- Combustion analysis of \mathbf{E} revealed the following atom content: 75.8% carbon, 5.8% hydrogen, and 18.4\% oxygen.
- E does not have a proton that is exchangeable with $\mathrm{D}_{2} \mathrm{O}$ in ${ }^{1} \mathrm{H}$-NMR spectroscopy.
- \mathbf{F} is an ionic compound.

2.3 Determine the structures of \mathbf{E}, \mathbf{F}, and \mathbf{G} (without stereochemical details).
 8.0pt

In the absence of a nucleophile or a trapping agent, arynes can undergo [2+2]-type cyclodimerization or [2+2+2]-type cyclotrimerization reactions under suitable conditions. The aryne derivative that is obtained when 3 is treated with one equivalent of CsF in MeCN can give, in principle, four different dimerization and trimerization products ($\mathbf{H}-\mathbf{K}$).

- H has two planes of symmetry.
- I is expected to exhibit 21 signals in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum.
- I and J both exhibit an m / z value of 318.1 in their mass spectra.

2.4 Determine the structures of H-K.

16pt

When $\mathbf{5}$ is reacted with β-ketoester $\mathbf{6}$ in the presence of 2 equivalents of CsF at $80^{\circ} \mathrm{C}, \mathbf{L}$ is obtained as the major product. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data for \mathbf{L}, recorded in CDCl_{3}, are as follows:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 7.79$ (dd, J = 7.6, 1.5 Hz, 1H), 7.47-7.33 (m, 2H), 7.25-7.20(m, 1H), $3.91(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 2.56 (s, 3H) ppm.
- ${ }^{13}$ C-NMR: δ 201.3, 172.0, 137.1, 134.4, 132.8, 132.1, 130.1, 127.5, 51.9, 40.2, 28.8 ppm .

2.5 Determine the structure of \mathbf{L}.

2.6 In the reaction shown in task 2.5, which of the statement(s) in the answer sheet 4.0pt describe(s) the function of CsF?

- The $p K_{a}$ values of HF and β-ketoester $\mathbf{6}$ in dimethyl sulfoxide (DMSO) are about 15 and 14 , respectively.

Diazapyrone derivative $\mathbf{8}$ was shown to be a useful reactant for the construction of a variety of cyclic frameworks. Its preparation from phenylglyoxylic acid (7) and its use in two different reactions are described below.

- \mathbf{Q} and \mathbf{T} are gases under ambient conditions.
- \mathbf{O} and \mathbf{P} are constitutional isomers.
- Q does not have any signals in its IR spectrum.
- Heating 1 mol of \mathbf{R} at $85^{\circ} \mathrm{C}$ generates 1 mol of reactive intermediate \mathbf{S}.
- Reaction of $\mathbf{8}$ with two equivalents of \mathbf{S} gives \mathbf{U}, \mathbf{Q}, and \mathbf{T}.

Note:

equiv= equivalent
cat= catalyst
2.7 Determine the structures of $\mathbf{M}-\mathbf{U}$.

(\pm)-Coerulescine

A spiro compound is typically an organic compound containing rings linked together by one common atom (spiroatom) as carbon atom with bold in figure below. The spiro[pyrrolidin-3,3'-oxindole] ring system is a structural framework incorporated in several cytostatic alkaloids and unnatural compounds. Coerulescine (1) and horsfiline are the simplest prototype members of this subfamily that show diverse biological activity and can be synthesized by the route shown below.

Claisen rearrangement, which is a [3,3]-sigmatropic rearrangement, is a powerful carbon-carbon bondforming reaction in which an allyl vinyl ether is converted thermally to an unsaturated carbonyl compound as shown in the Scheme below. When compound \mathbf{A} is heated, it undergoes Claisen rearrangement to give carbonyl compound \mathbf{B}.
For this entire task, your answers can be given without any stereochemical details.

Theory IChO 2020

1) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{EtOH}$

$\mathrm{NaH} \mathrm{Cl}^{\mathrm{O}}$

3.1 Draw the structures of \mathbf{A} and \mathbf{B}.

- A is an inseparable mixture of cis/trans isomers.
- B has IR absorption at $1726 \mathrm{~cm}^{-1}$.

$$
\begin{array}{lll}
\text { 3.2 Draw structures for } \mathbf{C}, \mathbf{D}, \mathbf{E}, \text { and } \mathbf{F} \text {. } & \text { 16.0pt } \\
\cdot \mathbf{D}-\mathbf{F} \text { have a bicyclic structure. }
\end{array}
$$

3.3 Choose the correct order of steps for the transformation of \mathbf{F} to \mathbf{G}. 4.0pt
3.4 Draw structures for \mathbf{G} and \mathbf{H} (both spiro compounds).
8.0pt
3.5 Draw the structure of the intermediate produced by treatment with n-BuLi in \quad 5.0pt the step $\mathbf{H} \rightarrow$ coerulescine (1).

Coerulescine (1), on treatment with N-bromosuccinimide (NBS), gives the bromo derivative, which upon heating with sodium methoxide in the presence of cuprous iodide gives horsfiline (I) in 60% yield.
3.6 Choose the correct structure for compound I consistent with the following se- 5.0pt lected ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data: $\delta 7.05(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J$ $=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
3.7 When the allyl ether of 2 naphthol is heated a sigmatropic rearrangement is 5.0 pt
initiated. Write the structure of major product isolated from this reaction.

Δ

Symmetry Does Matter!

There are numerous reactions in organic chemistry that proceed through cyclic transition states and these are classified as pericyclic reactions. Woodward-Hoffmann rules, developed by Robert B. Woodward and Roald Hoffmann, are used to rationalize stereochemical aspects and the activation energy of pericyclic reactions.

Woodward-Hoffmann rules				
	Electrocyclic reactions		Cycloadditions	
Number of electrons	Thermal ($\Delta)$	Photochemical $(h \nu)$	Thermal ($\Delta)$	Photochemical $(h \nu)$
$4 n$ $(\mathrm{n}=1,2, .)$.	Conrotatory (con)	Disrotatory	Disfavored	Favored
$4 n+2$ $(\mathrm{n}=1,2, .)$.	Disrotatory (dis)	Conrotatory	Favored	Disfavored

4.1 Fill in the table for reactions (i)-(iii) or products 2-5: 12.0pt

There are three possible benzotropone isomers. Although two of the benzotropone isomers were isolated, 3,4-benzotropone (1) has not been isolated. Its instability is attributed to the o-quinoidal structure of 1 because it has no sextet electron system in the benzene ring.
4.2 Draw the structures of stable benzotropone isomers \mathbf{A} (with 6 signals in its ${ }^{13} \mathrm{C}-\quad 6.0 \mathrm{pt}$ $\overline{\mathrm{NMR}}$) and \mathbf{B} (with 11 signals in its ${ }^{13} \mathrm{C}-\mathrm{NMR}$).

4.3 When the following tetraene is reacted under photochemical conditions, 6.Opt symmetry-allowed product(s) of three different ring sizes can form according to the Woodward-Hoffmann rules. Tick the correct answer in each row.

Prof. Dr. Aziz Sancar

The Nobel Prize in Chemistry 2015 was awarded jointly to the Turkish scientist Aziz Sancar, Swedish scientist Tomas Lindahl, and American scientist Paul Modrich for their "mechanistic studies of DNA repair". Pyrimidine bases found in DNA may undergo a photochemical [2+2]-cycloaddition reaction (see above figure) with UV light that reaches a person's skin, causing damage to DNA, which may ultimately lead to skin cancer. The research by Professor Aziz Sancar focused on the DNA repair mechanism for this type of damage.
Thymine (\mathbf{T}) is one of the nucleobases that can undergo such a photochemical reaction with UV light. Let us assume that we have a solution of free thymine that was subjected to UV irradiation.

4.4 Considering stereochemistry, draw the structures of all possible products of
this reaction between two free thymine (\mathbf{T}) molecules. Circle the compound(s)
which is/are chiral. Drawing only one enantiomer of an enantiomeric pair is
sufficient. Please note that only $C=C$ bonds participate in this reaction.

A broad range of halogenated derivatives of norbornadiene (\mathbf{N}) are known in the literature. Tribromonorbornadiene $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Br}_{3}\right)$ has six achiral (meso) isomers. Three of these isomers (6,7 , and 8) are given below.

6

7

8
4.5 How many signals do you expect from the ${ }^{13} \mathrm{C}$-NMR spectra of isomers 6, 7, and 9.0 pt 8? Fill in the following boxes.
4.6 Draw structures of the remaining achiral (meso) tribromo-norbornadiene 9.0pt $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Br}_{3}\right)$ isomers (\mathbf{C}, \mathbf{D}, and \mathbf{E}) in addition to $\mathbf{6 - 8}$ over the given figures in the boxes.

The NMR spectrum of ether 9 is complex. Two MeO - groups are different as are all the hydrogen atoms on the rings. However, diphenol 10 has a very simple NMR spectrum and there are only three types of protons (marked as a, b, and c). A reasonable average structure responsible for all resonance structures and its symmetry is shown as 11.

4.7 How many signals do you expect from the ${ }^{13} \mathrm{C}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 12 and
8.0pt 13?

12

13

Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision

Mevlana (Rumi) was a great mystic and Sufi poet who lived out his days in Konya in the $13^{\text {th }}$ century. The indirect relevance of Konya to chemistry is that the city provides 65% of the country's carrot production, from which one of the essential vitamins (vitamin A) is obtained.

Carrot is an important source of β-carotene, which gives the vegetable its orange color. This molecule is a red-orange pigment naturally found in plants and fruits and is a provitamin A carotenoid. It is converted to vitamin A, which is essential for normal growth and development, the immune system, and vision function.
β-Carotene has an extended polyene chain of 22 carbon atoms. It is a conjugated π-system, having alternating single and double bonds. Its experimental maximum absorption wavelength $\left(\lambda_{\max }\right)$ is 455 nm . We assume that all the bonds between C_{1} and C_{22} are conjugated bonds. There are 22π-electrons in the molecule (Figure 1).

Figure 1. Ball and stick representation of the structure of β-carotene. The gray and white spheres represent the carbon and hydrogen atoms, respectively. The numbered carbon atoms belong to the linear conjugated π-segment of the molecule.

To a crude approximation, the electrons in the $\mathrm{C}-2 \mathrm{Pz}$ orbitals, which are perpendicular to the molecular plane, are assumed to move along the entire molecule, without interacting with each other. They are like independent particles confined in a molecule moving along the x-axis in one dimension. These characteristics of π-electrons make them eligible for being treated by the simplest model called the particle in one-dimensional box model.

Theory IChO 2020

The wave function and the energies of the quantized levels for an electron moving in a one-dimensional box with infinite potential walls are given as follows:
$\Psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}$
where n is the quantum number, $\mathrm{n}=1,2,3,4, \ldots . \infty$, and L is the box length.
$E_{n}=\frac{n^{2} h^{2}}{8 m_{e} L^{2}} \quad$ (Eq.2)
In two dimension, within the framework of independent particle approximation, the wavefunction is expressed as a product of one-dimensional wavefunctions, and the energy is expressed as a sum of one-dimensional energies. The energy levels of the two dimensional rectangular box is given as follows:
$E_{n_{x}, n_{y}}=\left[\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}\right]\left\{\frac{h^{2}}{8 m_{e}}\right\}$
where $\mathrm{n}_{x}, \mathrm{n}_{y}$ are the quantum numbers and they are positive integers. $\mathrm{L}_{x}, \mathrm{~L}_{y}$ are the dimensions of the box in the 2D model. They are positive numbers.

> 5.1 Which two of the sentences given below are correct? Tick only one answer which includes correct sentences in your answer sheet.

The $\boldsymbol{\beta}$-carotene molecule is orange in color because:

i) it absorbs in the visible region of the electromagnetic spectrum.
ii) HOMO \rightarrow LUMO transition occurs by absorption of IR photon.
iii) the spacing between the $22^{\text {nd }}$ and the $23^{r d}$ energy levels is equal to the energy of the IR photon at the orange wavelength.
iv) it absorbs green/blue light and it transmits red/yellow color.
v) it absorbs in the UV-Vis region since the molecule has no net dipole moment.

Although it is highly unrealistic, let us assume that the conjugated segment of the molecule is linear and treated with the particle in a one-dimensional box model as shown in figure 2. In this case, the length of the box can be approximated as $\mathrm{L}=1.40 \times \mathrm{n}_{C}$ (in \AA), where n_{C} is the number of carbon atoms in the conjugated segment.

Use this information to answer the questions 5.2-5.6.

Figure 2. Schematic representation of the conjugated line segment made up carbon atoms of β-carotene in a one-dimensional box of length L.

Theory IChO 2020

5.2 Calculate the energies (in J) of the lowest two energy levels
13.0pt
5.3 Draw the wavefunctions of the lowest two energy levels with proper labelling $\quad 15.0 \mathrm{pt}$ the x-axis.
5.4 Sketch the energy level diagram up to $n=4$ showing the relative spacing. 8.0pt
5.5 What is the total π-energy (in J) of the molecule?
12.0pt
5.6 Calculate the wavelength (in nm) at which the transition between the highest 10.0pt occupied and lowest unoccupied energy levels occurs.

Use the particle in a two-dimensional box model to answer questions 5.7-5.8.

Figure 3. Schematic representation of the conjugated carbon atoms of β-carotene in a twodimensional box.

Assume that the conjugated segment is made up of carbon atoms that are all-trans to each other. The motion of the π-electrons is studied in the two-dimensional rectangular box with the dimensions $\mathrm{L}_{x}=$ $26.0 \AA \mathrm{~L}_{y}=3.0 \AA$ (Figure 3).
5.7 Calculate the energies (in J) of the highest occupied and the lowest unoccupied energy levels and the wavelength (in nm) at which the transition between these energy levels occurs.
5.8 What should be the L_{x} value (in \AA) in order for the molecule to absorb light at
12.0pt the experimental $\lambda_{\max }=455 \mathrm{~nm}$ if L_{y} is kept constant at $3.0 \AA$. (Assume that the quantum numbers for homo and lumo are the same as in the question 5.7.)

Thermodynamics through an Interstellar Journey

Part 1

In a hypothetical universe, an unknown amount of diborane participates in the following reaction:

$$
\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g})
$$

Assume that in this hypothetical universe, $\mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})$ obtained from this reaction was completely sublimed at 300 K . The necessary energy for sublimation was obtained through work released by one cycle of an ideal heat engine in which one mole of monoatomic perfect gas flows through the cycle described in the pressure (p) - volume $(\mathrm{V}$) diagram below:

- $A \rightarrow B$; isothermal reversible expansion receiving 250 J by heat transfer $\left(q_{H}\right)$ at a temperature of 1000 $\mathrm{K}\left(\mathrm{T}_{H}\right)$ from a hot source.
- $B \rightarrow D ;$ reversible adiabatic expansion.
- $\mathrm{D} \rightarrow \mathrm{C}$; isothermal reversible compression at a temperature of $300 \mathrm{~K}\left(\mathrm{~T}_{C}\right)$ releasing some amount of heat $\left(q_{C}\right)$ to a cold sink.
- $C \rightarrow A$; reversible adiabatic compression.

After heat transfers, the remaining energy is released as work (w). Also, q_{H} and q_{C} are related to T_{C} and T_{H} as follows:

$$
\frac{\left|q_{H}\right|}{\left|q_{C}\right|}=\frac{T_{H}}{T_{C}}
$$

The efficiency of the cycle can be found by work released by cycle (w) divided by heat absorbed by cycle $\left(q_{H}\right)$.
You are provided with the change in enthalpies of the following reactions at 300 K .

Theory IChO 2020

(1) $\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BCl}_{3}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{g})$
$\Delta_{r} H(1)=-1326 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $\mathrm{BCl}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g})$
$\Delta_{r} \boldsymbol{H}(2)=\mathbf{- 1 1 2 . 5} \mathrm{kJ} \mathrm{mol}^{-1}$
(3) $\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g})$
$\Delta_{r} H(3)=-493.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})$
$\Delta_{r} H(4)=-92.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6.1 Calculate the molar enthalpy of sublimation (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for $\mathrm{H}_{3} \mathrm{BO}_{3}$ at 300 K . 5.0 pt
6.2 Calculate the $\Delta_{r} U$ (internal energy) in terms of $\mathrm{kJ} \mathrm{mol}^{-1}$ at 300 K for the re- 12.0 pt actions (2) and (4) given above (assume ideal gas behavior for each gaseous species in each reaction).
6.3 Calculate the amount of overall work produced by a heat engine (|w|) in terms 6.0pt of J and the amount of overall heat released to the cold sink $\left(\left|q_{C}\right|\right)$ in terms of J.
6.4 Calculate the efficiency of the heat engine described above. 3.0pt
6.5 Calculate the entropy change (ΔS) for $A \rightarrow B$ and $D \rightarrow C$ processes in the heat 6.0pt engine in terms of K^{-1}.
6.6 Calculate the Gibbs energy change (ΔG) in terms of J for $A \rightarrow B$ and $D \rightarrow C$ pro- $6.0 p t$ cesses in the heat engine.
6.7 Calculate the ratio of pressure at point A to the pressure at point B in the cycle $5.0 p t$ cycle (standard pressure: 1 bar).
6.8 Calculate the amount of $\mathrm{H}_{2}(\mathrm{~g})$ (in moles) produced according to the reaction \quad 3.0pt

Part 2

Interstellar journeys can be done by using diborane as rocket fuel. Combustion of diborane is shown below:

$$
\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Combustion of diborane is experimented in a 100 L closed container at different temperatures and the equilibrium conditions were recorded.

Theory IChO 2020

English (Official)

	$8930 \mathbf{~ K}$	$9005 \mathbf{K}$
$\mathrm{~B}_{2} \mathrm{H}_{6}(\mathrm{~g})$	0.38 mol	0.49 mol
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	0.20 mol	0.20 mol

Partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ was stabilized to 1 bar and kept constant at all conditions. Assume that in this hypothetical universe; $\Delta_{r} S^{\circ}$ and $\Delta_{r} \mathrm{H}^{\circ}$ are independent of temperature, the standard molar entropy $\left(\mathrm{S}^{\circ}\right)$ of $\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})$ does not change with pressure, all the gas species behave as an ideal gas, and all species remain in the same phase, without any further decomposition before or after reaction, at all temperatures then:
6.9 Calculate K_{p} (pressure based equilibrium constant) at 8930 K and 9005 K . $\quad 8.0 \mathrm{pt}$
6.10 Calculate $\Delta_{r} G^{\circ}$ of the reaction in terms of $\mathrm{kJ} \mathrm{mol}^{-1}$ at 8930 K and 9005 K . (If you 6.0 pt failed to find K_{p}, please use $\left.\mathrm{K}_{p}(8930 \mathrm{~K})=2, \mathrm{~K}_{p}(9005 \mathrm{~K})=0.5\right)$
6.11 Calculate $\Delta_{r} G^{\circ}$ (in terms of $\mathrm{kJ} \mathrm{mol}^{-1}$), $\Delta_{r} \mathrm{H}^{\circ}$ (in terms of $\mathrm{kJ} \mathrm{mol}^{-1}$), and $\Delta_{r} \mathrm{~S}^{\circ}$ (in $\quad 6.0 \mathrm{pt}$ terms of $\mathrm{Jol}^{-1} \mathrm{~K}^{-1}$) of the combustion reaction at 298 K . (If you failed to find K_{p}, please use $\left.\mathrm{K}_{p}(8930 \mathrm{~K})=2, \mathrm{~K}_{p}(9005 \mathrm{~K})=0.5\right)$
6.12 Tick the correct answer in the table by determining whether combustion reac
8.0pt tions are favored or not at given T below under standard pressure (1 bar).
6.13 Calculate the $\Delta_{f} \mathrm{H}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ and $\mathrm{S}^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ using the values
6.0pt given in the table below. ($\Delta_{f} \mathrm{H}=$ enthalpy of formation, $\mathrm{S}^{\circ}=$ standard entropy) (If you fail to find $\Delta_{r} \mathrm{H}^{\circ}$ and $\Delta_{r} S^{\circ}$ of the combustion, please use $\Delta \mathrm{H}^{\circ}=1000 \mathrm{~kJ}$ mol-1, $\Delta \mathrm{S}^{\circ}=150 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

	$\Delta_{f} \mathrm{H}(298 \mathrm{~K})$	$\mathrm{S}^{\circ}(298 \mathrm{~K})$
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})$	$36.40 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$0.23 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{O}_{2}(\mathrm{~g})$	$0.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$0.16 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{~s})$	$-1273 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$0.05 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Phthalocyanines

1

Emeritus Professor Özer Bekaroğlu

The term phthalocyanine (Pc) takes its origin from the Greek "naphtha", which means rock oil, and "cyanine", which means dark blue. Turkish scientist Özer Bekaroğlu can be regarded as the pioneer of Pc chemistry in Turkey.

Metal-free phthalocyanine (1, $\mathrm{H}_{2} \mathrm{Pc}$) is a large planar macrocyclic compound with the formula $\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4} \mathrm{H}_{2}$.
7.1 How many π-electrons are there in the bold region of the H_{2} Pc molecule in com- 4.0 pt pound 1 shown above?

CuPc
2

TiOPc
3

$\underset{4}{\mathrm{SiCl}_{2} \mathrm{Pc}}$

$\underset{5}{\mathrm{Ce}(\mathrm{Pc})_{2}}$

Theory IChO 2020

Pcs containing one or two metal ions are called metallo-phthalocyanines (MPcs) and they exhibit different geometries as given above.

```
7.2 Complete the table in your answer sheet by determining the coordination num-
8.Opt ber of central ions in 2-5.
```

```
7.3 Complete the table in your answer sheet by determining the oxidation number
6.0pt of each metal ( \(\mathrm{Cu}, \mathrm{Ti}\), and Ce ) in 2, 3, and 5.
```

7.4 Complete the table in your answer sheet by determining the geometry of com-
8.0pt pounds 2-5.
7.5 Complete the table in your answer sheet by determining the magnetic property
8.0pt of compounds 2-5.

- Use the letter " \mathbf{p} " for paramagnetic property and letter "d" for a diamagnetic property.
7.6 Write the ground-state electron configuration of the silicon (Si) ion in the com-
14.0pt pound 4 , and find all the quantum numbers for the 2 pelectrons in its ground state.

Metal-free phthalocyanine $\left(1, \mathrm{H}_{2} \mathrm{Pc}\right)$ is commonly formed through the cyclotetramerization of phthalonitriles. On the other hand, Pcs having different substituents are called asymmetric, which can be prepared by the statistical cyclization of two different phthalonitriles. This method has no selectivity and the product is a mixture of all possible isomers.

```
7.7 Draw the possible products that may occur in the statistical cyclization method
        by using F and G. If there are any stereoisomers label as cis-or trans-.
- \(\mathbf{F}\) and \(\mathbf{G}\) represent two different symmetrical phthalonitriles.
- One of the products is \(\mathbf{F}_{4}\) as given below.
- Draw other products similar to the format in \(\mathbf{F}_{4}\).
```


Pcs are used as photosensitizers in the photodynamic therapy (PDT) of cancer due to their strong absorption in the visible spectrum and high molar absorption coefficients. PDT consists of three essential

components: photosensitizer, light, and oxygen. None of these is individually toxic, but together they initiate a photochemical reaction resulting in the generation of cytotoxic singlet oxygen $\left({ }^{1} \mathrm{O}_{2}\right)$ that can destroy cancer cells.
(multiplicity) ${ }^{1} \mathbf{O}_{2}$

- The multiplicity of an energy level is defined as $2 S+1$
- If the two spins are parallel $(\uparrow \uparrow), S=1$, and if the two spins are antiparallel $(\uparrow \downarrow), S=0$.
7.8 Draw the molecule orbital (MO) diagram of the lowest energy singlet state of
12.0pt dioxygen (${ }^{1} \mathrm{O}_{2}$) and calculate bond order.
- There are no unpaired electrons in that state!
7.9 If the wavelength of the light needed to excite triplet oxygen into singlet oxy- 6.0 pt gen is 1270 nm , calculate the energy (in kJ per mole) needed for this transition process.

Theory IChO 2020

Boron Compounds and Hydrogen Storage

Sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ and ammonia borane $\left(\mathrm{BNH}_{6}\right)$ are the most studied chemical hydrogen storage materials. In this question, you will explore the chemistry of boron and the use of boron compounds as hydrogen storage materials.

Borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot \mathrm{nH}_{2} \mathrm{O}\right)$ is a boron mineral that is produced by ETI Mining Company in Turkey. NaBH_{4} can be synthesized by the reduction of anhydrous borax with metallic sodium under high-pressure hydrogen gas in the presence of silicon dioxide (silica) at $700^{\circ} \mathrm{C}$, namely the Bayer process. In this process, all hydrogen is stored in NaBH_{4}. On the other hand, it has been shown that ammonia borane $\left(\mathrm{BNH}_{6}\right)$ can be synthesized by the reaction of NaBH_{4} and ammonium sulfate in dry tetrahydrofuran (THF) at $40^{\circ} \mathrm{C}$ (Hint: BNH_{6} synthesis must be conducted in a well-ventilated fume-hood because flammable gas is generated as one of the by-products). While NaBH_{4} is an ionic compound, ammonia borane is a Lewis acid-base adduct.

$$
\text { 8.1 Write a balanced chemical equation for the synthesis of } \mathrm{NaBH}_{4} \text { from anhydrous } 3.0 \mathrm{pt}
$$

$$
\text { 8.2 } \frac{\text { Write a balanced chemical equation for the synthesis of ammonia borane from }}{\mathrm{NaBH}_{4}} \text {. }
$$

8.3 Draw the molecular geometries of the BH_{4}^{-}ion and BNH_{6} molecule.
4.0pt

8.4 Calculate the hydrogen content of NaBH_{4} and BNH_{6} as a percentage by mass 4.0 pt (wt\%).

The hydrogen stored in both compounds can be released via hydrolysis reactions in the presence of a suitable catalyst at room temperature. Upon the hydrolysis reactions, 4 and 3 moles of H_{2} gas are

Theory IChO 2020

released from the hydrolysis of 1 mole of NaBH_{4} and BNH_{6}, respectively, along with metaborate anion including B-O bonds.
8.5 Write the balanced chemical equations for the hydrolysis of NaBH_{4} and BNH_{6}. 4.0pt

One of the simplest stable borates is diboron trioxide $\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)$. Higher borates such as $\mathrm{B}_{3} \mathrm{O}_{6}^{3-}$ having cyclic structures containing $\mathrm{B}-\mathrm{O}$-bonds can be formed. Since $\mathrm{B}_{2} \mathrm{O}_{3}$ is an acidic compound, it is easily reacted with water to produce boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$. On the other hand, the high temperature and high-pressure reaction of $\mathrm{B}_{2} \mathrm{O}_{3}$ with ammonia yields two-dimensional boron nitride, which consists of planar graphitelike sheets of alternating B and N atoms.
8.6 Write the balanced chemical equations for the synthesis of boric acid and boron 4.0pt nitride.
8.7 Draw the molecular structures of the $\mathrm{B}_{3} \mathrm{O}_{6}^{3-}$ ion, boric acid, and a single two- 6.0pt dimensional boron nitride sheet. Hint: show at least 10 B atoms in the boron nitride structure.

Furthermore, B-H compounds, called boranes, are an important class of boron compounds. The simplest stable borane is diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ and many of the higher boranes can be prepared by the pyrolysis of diborane. Diborane can be synthesized via metathesis of a boron halide and a hydride source.

> 8.8 Write a balanced chemical equation for the synthesis of diborane from the reaction of BF_{3} and LiBH_{4}. Hint: both products are boron compounds.
8.9 Draw the molecular geometry of the diborane molecule. Hint: there is no B-B $2.0 p t$ bond in the molecule.
BH_{3} (borane) is an unstable and highly reactive molecule. Therefore, it is not possible to isolate it as BH_{3} under ordinary conditions. However, it can be stabilized via its reaction with carbon monoxide to yield borane carbonyl $\left(\mathrm{BH}_{3} \mathrm{CO}\right)$ compound, which is an adduct of borane. The preparation of $\mathrm{BH}_{3} \mathrm{CO}$ plays an important role in exploring the chemistry of boranes as it indicates the likely existence of the borane molecule.

```
8.10 Sketch the Lewis dot structure of \(\mathrm{BH}_{3} \mathrm{CO}\) molecule by showing the formal charges.
```

8.11 Which of the statements given in the answer sheet is observed in the $\mathrm{C}-\mathrm{O}$ bond
2.0pt of a CO molecule upon the bond formation between BH_{3} and CO ? Tick the correct box.

Borazine consists of single and double bonded cyclic $\mathrm{B}-\mathrm{N}$ units and hydrogen atoms attached to these atoms with the molecular formula $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ and is isostructural to benzene. Borazine can be synthesized by using a two-step procedure including the synthesis of symmetrically trisubstituted chlorine derivatives of borazine $\left(\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{3} \mathrm{Cl}_{3}\right)$ from the reaction of ammonium chloride and boron trichloride, and then reduction of $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{3} \mathrm{Cl}_{3}$ with LiBH_{4} in THF.

Theory IChO 2020

8.12 Write the balanced chemical equations for the two-step synthesis of borazine
 4.0pt starting from ammonium chloride in THF (tetrahydrofuran). Hint: THF stabilizes one of the products by forming a lewis acid-base adduct.

8.13 $\frac{\text { Draw }}{\text { chlorine derivative. }}$

Catalysts are substances that accelerate the rate of reactions by allowing them to proceed in a lower energy pathway. The catalytic activity of the catalysts is generally determined by the turnover frequency (TOF), which is calculated by dividing the molar amount of the product to the mole of active catalyst and the time (TOF = mole product/(mole catalyst x time)). A typical hydrolysis of BNH_{6} was carried out in 10.0 mL of water by using $100.0 \mathrm{mM} \mathrm{BNH}_{6}$ and 5.0 mg of CuPt/C catalyst (CuPt alloy nanoparticles supported on carbon black containing $8.2 \mathrm{wt} \% \mathrm{Pt}$ atom). 67.25 mL of hydrogen gas was generated in 5 minutes.
8.14 Assuming the catalytic reaction is performed in standard conditions (1 4.0pt atm and 273.15 K), calculate the TOF $\left(\mathrm{min}^{-1}\right)$ of the CuPt/C catalyst in terms of only Pt atoms in the hydrolysis of BNH_{6} by considering the volume of the hydrogen gas generated.

As a result of detailed crystal analysis of a synthesized $\mathrm{Cu}_{x} \mathrm{Pt}_{y}$ alloy nanoparticle (the subscripts indicate molar percentages of the atoms in the alloy structure), it was determined that the face centered cubic (fcc) unit cell was formed by Pt atoms and the Pt atoms on the face of the fcc unit cell are supposed to be replaced with Cu atoms to form $\mathrm{Cu}_{x} \mathrm{Pt}_{y}$ displacement alloy nanoparticles. According to this information, answer the following questions.

> 8.15 Determine the composition of the alloy nanoparticles by finding x and y in the \quad 2.0pt $\mathrm{Cu}_{x} \mathrm{Pt}_{y}$ alloy composition.
$\begin{array}{ll}\text { 8.16 Sketch the shape of the described crystal unit cell of } \mathrm{Cu}_{x} \mathrm{Pt}_{y} \text { alloy nanoparticles } & \text { 2.0pt } \\ \text { by showing the placement of atoms on the unit cell. }\end{array}$
8.17 Another alloy has a $\mathrm{Cu}_{2} \mathrm{Pt}_{1}$ composition. Assume that this alloy also has an fcc
4.0pt unit cell with an edge length of 380 pm , but the Cu and Pt atoms are randomly distributed in the atomic positions. Calculate the density of this alloy in $\mathrm{g} / \mathrm{cm}^{3}$.

Quantification of Heavy Metal Ions

For the quantitative analysis of heavy metal ions in a factory's wastewater pool, the following steps have been applied by an analyzer at 298 K :
Step 1) $10-\mathrm{mL}$ samples of each were obtained from five different regions in a wastewater pool, mixed in a $100-\mathrm{mL}$ beaker, and then stirred for 5 minutes using a magnetic stirrer.

Step 2) $10-\mathrm{mL}$ of sample solution was taken from the $100-\mathrm{mL}$ beaker and 142 mg of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added while stirring, followed by transfer to a three-electrode cell as seen in Figure 1a. In this electrochemical cell, Pt wire, $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{KCl})$, and Pt foil served as the working, reference, and counter electrodes, respectively.
Step 3) These electrodes were connected to a potentiostat and a constant potential of -0.50 V vs . $\mathrm{Ag} / \mathrm{AgCl}$ for 14 minutes was applied as seen in Figure 1 b (horizontal line). It is assumed that 14 min . is sufficient to complete the expected electrochemical reactions.

Figure 1. a) Electrochemical cell design; 1) Working electrode (Pt wire), 2) reference electrode ($\mathrm{Ag} / \mathrm{AgCl}, 3 \mathrm{M} \mathrm{KCl}$), 3) counter electrode (Pt foil), 4) cell tap, 5) electrochemical cell, 6) $10-\mathrm{mL}$ of sample solution. b) Potential change of working electrode as a function of time. y-axis: potential/V vs Ag/AgCl, x-axis: time/min.

Step 4) The electrodes were rinsed with distilled water, placed into another electrochemical cell including $10-\mathrm{mL}$ of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, and potential was scanned between -0.50 and +0.50 V as seen in Figure 1b (downward sloping line in 2 min.). Current vs. potential data for this step are presented in Figure 2a, which is like an excellent view of Mount Ararat (Ağrı Dağı), the highest mountain in Turkey (Figure 2b).

Theory IChO 2020

Figure 2. a) Potential scan of the working electrode as a function of current in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution after keeping it constant at a potential of -0.50 V in $10-\mathrm{mL}$ of wastewater sample as seen in Figure 1b (horizontal line). y-axis: current $/ \mu \mathrm{A}, \mathrm{x}$-axis: potential $/ \mathrm{V}$ vs $\mathrm{Ag} / \mathrm{AgCl}, \mathrm{b}$) A view of Great and Little Ararat peaks.

Step 5) Another 10-mL of the sample solution prepared in step 1 was taken and the processes explained in steps 2 and 3 were applied in that order. The electrodes were rinsed with distilled water and placed into $10-\mathrm{mL}$ of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Then the potential of the working electrode was kept constant at +0.05 V for 14 min . It is assumed that 14 minutes is sufficient to complete the expected electrochemical reactions.

Step 6) After step 5 was performed, the solution in the electrochemical cell was placed in a suitable oven to evaporate at $150^{\circ} \mathrm{C}$ until dry solid was obtained.
Step 7) 5-mL of ethylenediaminetetraacetic acid (EDTA, $\mathrm{H}_{4} \mathrm{Y}$) (Figure 3) solution was added to the solid obtained in step 6 and it was shaken to dissolve. It is known that $1-\mathrm{mL}$ of EDTA solution is equivalent to $3.85 \mathrm{mg} / \mathrm{mL} \mathrm{BaCO}_{3}$. Then, pH of the solution was adjusted to 10.0. Excess EDTA was titrated with standard $0.0010 \mathrm{M} \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ solution and it was observed that 95.60 mL of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ solution was consumed up to the endpoint.

Theory IChO 2020

Figure 3. Chemical structure of EDTA $\left(\mathrm{H}_{4} \mathrm{Y}\right)$.

- In water saturated with $\mathrm{H}_{2} \mathrm{~S}$, equilibrium concentration of $\left[\mathrm{H}_{2} \mathrm{~S}\right]$ is 0.1 M .
- $\mathrm{K}_{s p}(\mathrm{NiS})=4.0 \times 10^{-20} ; \mathrm{K}_{s p}(\mathrm{CuS})=1.0 \times 10^{-36}$
- $\mathrm{K}_{a 1}\left(\mathrm{H}_{2} \mathrm{~S}\right)=9.6 \times 10^{-8} ; \mathrm{K}_{a 2}\left(\mathrm{H}_{2} \mathrm{~S}\right)=1.3 \times 10^{-14}$

Reaction	\mathbf{E}° /V (at 298 K)
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$2 \mathrm{H}^{+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0.00
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23

9.1 Which of the following can be considered for peak 1 and peak 2 in Figure 2a, 5.0pt respectively? Tick the correct box on the answer sheet.
9.2 Which of the statements is expected, if the potential is applied as -1.2 V instead
5.0pt of -0.5 V at the first step (horizontal line) in Figure 1 b ? Tick the correct box on the answer sheet.
9.3 Calculate the scan rate of data presented in Figure 2a as mV/s at 298 K .
8.0pt

The potential of the following cell is measured as 0.437 V .
$\mathrm{Pt}, \mathrm{H}_{2}$ (0.92 bar) $\mid \mathrm{HCl}\left(1.50 \times 10^{-2} \mathrm{M}\right), \mathrm{AgCl}($ sat $) \mid \mathrm{Ag}$
9.4 Calculate the standard electrode potential value (V) of half-cell of $\mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \quad 16.0 \mathrm{pt}$ $\mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq})$ at 298 K .
Note: You must show all works.
9.5 Which of the statements is the main purpose of step 5 in this analysis? Tick the 5.0 pt correct box on the answer sheet.

Q9-4
English (Official)
9.6 Write net ionic equations for the complexation and the back titration reactio 6.0pt of step 7 on the answer sheet.
9.7 Calculate Ni^{2+} concentration as mg / L in the wastewater of the factory. Note: 25.0 pt You must show all works.
9.8 Calculate the minimum pH value for starting the precipitation of Ni^{2+} ions in 30.0 pt the solution obtained in step 5 by passing saturated $\mathrm{H}_{2} \mathrm{~S}$ gas into the solution until saturation. If you cannot solve question 9.7 , use $20 \mathrm{mg} / \mathrm{L} \mathrm{Ni}{ }^{2+}$ sample for this question. Note: You must show all works.

